Eichtransformation der Lagrangefunktion: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 203: Zeile 203:


<math>\ddot{q}+{{\omega }^{2}}q=0</math>}}
<math>\ddot{q}+{{\omega }^{2}}q=0</math>}}
==Forminvarianz der Lagrangegleichung==
Eine schwächere Form der Invarianz ( als die Eichinvarianz) ist die Forminvarianz.
Dabei gilt als Forminvarianz:
<math>\frac{\partial L}{\partial {{q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{Q}_{k}}}-\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{Q}}}_{k}}}=0</math>
Für welche Trnsformationen der generalisierten Koordinaten
<math>F:\left\{ {{q}_{k}} \right\}\to \left\{ {{Q}_{k}} \right\}</math>
sind nun die Lagrangegleichungen forminvariant ?
Satz:
Sei
<math>F:\left\{ {{q}_{k}} \right\}\to \left\{ {{Q}_{k}} \right\}</math>
ein C²- Diffeomorphismus,
also eine umkehrbare und eindeutige Abbildung und sind
<math>F,{{F}^{-1}}</math>
beide zweimal stetig differenzierbar, dann ist
<math>\left\{ {{Q}_{k}}(t) \right\}</math>
Lösung der Lagrangegleichung zur transformierten Lagrangefunktion:
<math>\tilde{L}({{Q}_{k}},{{\dot{Q}}_{k}},t):=L({{f}_{k}}({{Q}_{i}},t),\sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{\dot{Q}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t},t)</math>
mit
<math>\begin{align}
  & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
& \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\
\end{align}</math>
Diese Aussage ist äquivalent zur Aussage:
<math>\left\{ {{q}_{k}}(t) \right\}</math>
sind Lösung der Lagrangegleichungen zu
<math>L({{q}_{k}},{{\dot{q}}_{k}},t)</math>
'''Beweis:'''
<math>\frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}=\sum\limits_{l=1}^{f}{\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{{\dot{q}}}_{l}}}{\partial {{{\dot{Q}}}_{k}}}=}\sum\limits_{l=1}^{f}{\frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right)}</math>
wegen
<math>\begin{align}
  & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
& \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\
\end{align}</math>
Nun:
<math>\begin{align}
  & \frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}=\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{d}{dt}\left( \frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right) \right\}} \\
& =\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right) \right\}} \\
\end{align}</math>
und auf der anderen Seite:
<math>\frac{\partial \tilde{L}}{\partial {{Q}_{k}}}=\sum\limits_{l=1}^{f}{\left( \frac{\partial L}{\partial {{q}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right) \right)}</math>
Somit:
<math>\begin{align}
  & \frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}-\frac{\partial \tilde{L}}{\partial {{Q}_{k}}}=\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right)-\left( \frac{\partial L}{\partial {{q}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right) \right) \right\}} \\
& =\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}-\left( \frac{\partial L}{\partial {{q}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right) \right\}}=\sum\limits_{l=1}^{f}{\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]-\left( \frac{\partial L}{\partial {{q}_{l}}} \right) \right\}} \\
\end{align}</math>
Dabei bildet
<math>\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}</math>
die Transformationsmatrix, die nichtsingulär sein muss, also
<math>\det \frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}\ne 0</math>
Daher die Bedingung, dass
Sei
<math>F:\left\{ {{q}_{k}} \right\}\to \left\{ {{Q}_{k}} \right\}</math>
ein C²- Diffeomorphismus,
also eine umkehrbare und eindeutige Abbildung und
<math>F,{{F}^{-1}}</math>
beide zweimal stetig differenzierbar.
Nur dann ist
<math>\left\{ {{Q}_{k}}(t) \right\}</math>
Lösung der Lagrangegleichung zur transformierten Lagrangefunktion.
Denn diese Aussage ist äquivalent zu
<math>\begin{align}
  & {{Q}_{i}}={{F}_{i}}({{q}_{1}},...{{q}_{f}},t) \\
& {{q}_{k}}={{f}_{k}}({{Q}_{1}},...,{{Q}_{f}},t)\quad mit\quad \det \frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}\ne 0 \\
\end{align}</math>
Man sagt, die Variationsableitung
<math>\frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}-\frac{\partial \tilde{L}}{\partial {{Q}_{k}}}</math>
ist kovariant unter diffeomorphen Transformationen der generalisierten Koordinaten
Also gibt es auch unendlich viele äquivalente Sätze generalisierter Koordinaten.

Version vom 28. August 2010, 19:18 Uhr



Uneindeutigkeit der Lagrangefunktion

Die Lagarangefunktion wird duch die Lagrangegleichung nicht eindeutig festgelegt.

Betrachten wir beispielsweise ein geladenes Teilchen im elektrischen Feld:



e sei die Ladung

Bewegungsgleichung:



Die Lorentzkraft ist typischerweise nicht konservativ

Die Darstellung des elektrischen und magnetischen Feldes erfolgt über die Potenziale:



Dabei ist Skalar und A ein Vektorpotenzial (MKSA- System)

Ziel: Suche eine Lagrangefunktion in der Art, dass


Die Bewegungsgleichung ergeben.

Ansatz:



Probe:



Weiter:



Somit:



Somit erfüllt unser Ansatz die Bewegungsgleichungen

Eichtransformationen

Die Potenziale lassen sich umeichen mit Hilfe der Eichfunktion



Durch Eisnetzen sieht man schnell, dass sich die Felder nicht ändern:



Betrachten wir die Lagrangefunktion, so ergibt sich:



Einsetzen zeigt: L´ führt zu denselben Lagrangegleichungen wie L.

Die Eichtransformation



Mit einer beliebigen Eichfunktion M ( skalar) läßt die Lagrangegleichungen invariant.

Allgemein gilt:

Sei beliebig

und


dann erfüllen die


das hamiltonsche Prinzip

Also:



Das bedeutet, die Euler- Lagrangegleichungen sind invariant unter Transformationen der Art



mit beliebig.

Beweis:



mit



Einzige Nebenbedingung:


darf nicht explizit von abhängen.


Beispiel: eindimensionaler Oszi



Beispielhafte Eichfunktion:




Die Lagrangegleichungen lauten:



Es folgt als Bewegungsgleichung