Quantentheoretischer Zugang: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
=
==Einteilchenzustände im Kasten==
 
Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper:
Einteilchenzustände im Kasten
 
=Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper:
[[File:Particle_in_a_box_wavefunctions.svg|miniatur|Kastne mit Länge L und Energiedifferenz <math>\Delta \epsilon</math>  
[[File:Particle_in_a_box_wavefunctions.svg|miniatur|Kastne mit Länge L und Energiedifferenz <math>\Delta \epsilon</math>  
<math>V=L^3</math> (Volumen)]]
<math>V=L^3</math> (Volumen)]]
Die Dichte des Energienivieaus ist bestimmt durch die Länge L.
Die Dichte des Energienivieaus ist bestimmt durch die Länge L.
<math>H=\frac{{{p}^{2}}}{2m}+{{V}_{Kasten}}\left( {\vec{r}} \right)</math> für unendlich hohe Wände
Einteilchenfunktion
<math>{{\varphi }_{n}}\left( {\vec{r}} \right)=\sqrt{\frac{2}{L}}\sin \left( \frac{{{n}_{x}}\pi }{L}x \right)\sqrt{\frac{2}{L}}\sin \left( \frac{{{n}_{y}}\pi }{L}y \right)\sqrt{\frac{2}{L}}\sin \left( \frac{{{n}_{z}}\pi }{L}z \right)</math>
mit
<math>\vec{n}=\left( {{n}_{x}},{{n}_{y}},{{n}_{z}} \right);\quad{{n}_{i}}=1,2,...</math>
und Energieeigenwerten
<math>{{\varepsilon }_{n}}=\frac{\hbar {{\pi }^{2}}}{2m{{L}^{2}}}\left( {{n}_{x}}^{2}+{{n}_{y}}^{2}+{{n}_{z}}^{2} \right)</math>
Diracschreibweise: Zustand nur durch Qantenzahlen chartisiert
<math>{{\varphi }_{n}}\left( {\vec{r}} \right)=\left\langle  {\vec{r}} | n \right\rangle \to \left| n \right\rangle </math>(3-Quantenzahlen)
==Großer Kasten, dichtliegende Zustände==
in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen
<math>{{\varphi }_{n}}\left( x=0,y,z \right)={{\varphi }_{n}}\left( x=L,y,z \right)\quad \forall {{x}_{i}}</math> periodisch angeordnete Kästen nebeneinander


<math>H=\frac{{{p}^{2}}}{2m}+{{V}_{Kasten}}\left( {\vec{r}} \right)</math> für unendlich hohe Wände
'''Ansatz''': freie Teilchen im Kasten: <math>{{e}^{i\vec{k}.\vec{r}}}</math>
<math>\begin{align}
  & \Rightarrow {{e}^{i\vec{k}.\vec{r}}}={{e}^{i\vec{k}.\left( \vec{r}+\vec{L} \right)}},\quad \vec{L}=\left( L,L,L \right) \\
& \Rightarrow {{e}^{i\vec{k}.\vec{r}}}=1\text{  w }\!\!\ddot{\mathrm{a}}\!\!\text{ hlen} \\
& \Rightarrow {{k}_{i}}=\left( {{k}_{x}},{{k}_{y}},{{k}_{z}} \right):\,\,{{k}_{i}}=\frac{2\pi }{L}{{m}_{i}},\,\,{{m}_{i}}\in \mathbb{Z} \\
\end{align}</math>

Version vom 29. August 2010, 15:07 Uhr

Einteilchenzustände im Kasten

Betrachte Gase, also Teilchen im Kasten, auch möglich Mödell für Festkörper:

Kastne mit Länge L und Energiedifferenz (Volumen)

Die Dichte des Energienivieaus ist bestimmt durch die Länge L. für unendlich hohe Wände Einteilchenfunktion mit und Energieeigenwerten Diracschreibweise: Zustand nur durch Qantenzahlen chartisiert (3-Quantenzahlen)

Großer Kasten, dichtliegende Zustände

in einem großen Kasten sollen die Randbeingungne nicht so wichtig sien, Modell für makroskopischen Körper, nehmen periodische Randbedingungen periodisch angeordnete Kästen nebeneinander

Ansatz: freie Teilchen im Kasten: