Verallgemeinerte kanonische Verteilung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Unicodifying
Zeile 71: Zeile 71:




:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math> Die {{FB|verallgemeinerte kanonische Verteilung}}
{{Def|:<math>\Rightarrow {{P}_{i}}=\exp \left( \Psi -{{\lambda }_{n}}{{M}_{i}}^{n} \right)</math> '''verallgemeinerte kanonische Verteilung'''|verallgemeinerte kanonische Verteilung}}


Die Lagrange- Multiplikatoren <math>\Psi ,{{\lambda }_{n}}</math>  sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !
Die Lagrange- Multiplikatoren <math>\Psi ,{{\lambda }_{n}}</math>  sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !
Zeile 169: Zeile 169:




<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
<math>\Psi =\Psi \left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> und <math>{{P}_{i}}</math> sind durch <math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> vollständig parametrisiert.
  und
<math>{{P}_{i}}</math>
sind durch  
<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
vollständig parametrisiert.


'''Nebenbemerkung'''
'''Nebenbemerkung'''


Die Verteilung  
Die Verteilung <math>{{P}_{i}}</math> bzw. <math>\rho \left( x \right)</math> wirkt auf dem Raum der Zufallsvariablen <math>{{M}_{i}}^{n}</math> (diskret) bzw. <math>x\in {{R}^{d}}</math>(kontinuierlich).
<math>{{P}_{i}}</math>
:<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math> sind Parameter.
bzw.  
<math>\rho \left( x \right)</math>
wirkt auf dem Raum der Zufallsvariablen  
<math>{{M}_{i}}^{n}</math>
(diskret) bzw.  
<math>x\in {{R}^{d}}</math>
(kontinuierlich).




<math>\left( {{\lambda }_{1}},...,{{\lambda }_{m}} \right)</math>
:<math>\left\langle {{M}^{n}} \right\rangle </math> sind Erwartungswerte <math>\left\langle {{M}^{n}} \right\rangle \in R</math>
sind Parameter.




<math>\left\langle {{M}^{n}} \right\rangle </math>
{{Beispiel|'''Beispiel:'''
sind Erwartungswerte
<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math> ( Phasenraumelement)
<math>\left\langle {{M}^{n}} \right\rangle \in R</math>


 
mit <math>\Gamma </math> als Phasenraum der kanonisch konjugierten Variablen
'''Beispiel:'''
 
 
<math>x=\left( {{q}_{1}},...,{{q}_{3N}},{{p}_{1}}....,{{p}_{3N}} \right)\in \Gamma </math>
  ( Phasenraumelement)
 
mit  
<math>\Gamma </math>
als Phasenraum der kanonisch konjugierten Variablen




Zeile 213: Zeile 190:




<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math>
<math>\left\langle M\left( x \right) \right\rangle =\left\langle \sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right) \right\rangle </math> als mittlere Energie
als mittlere Energie
}}
 
'''Shannon- Information:'''
'''Shannon- Information:'''



Version vom 11. September 2010, 15:03 Uhr




Motivation

Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte von Mikroobservablen M(x), interpretiert als Zufallsvariable.

Rückschlüsse von auf die Wahrscheinlichkeitsverteilung


Methode

Vorurteilsfreie Schätzung ( Jaynes , 1957): (unbiased guess; Prinzip des maximalen Nichtwissens)

  • Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
    • ( Minimum der Shannon- Information = Maximum des Nichtwissens liefert Gleichverteilung)
  • Jetzt: Zusätzlich zur Normierung der Pi sind die Mittelwerte von m Zufallsvariablen:


Annahme:

Jedes Elementarereignis hat gleiche a-priori- Wahrscheinlichkeit , das heißt OHNE zusätzliche Kenntnisse gilt Gleichverteilung über den .

Informationstheoretisches Prinzip

(nach (Jaynes 1922-1998))

Suche die Wahrscheinlichkeitsverteilung , die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die minimale Information enthält:

Also:

Nebenbed.:

Variation:


Es gilt: von den N Variationen sind nur N-m-1 unabhängig voneinander !

Lagrange- Multiplikator


Lagrange- Multiplikator

Anleitung: Wähle so, dass die Koeffizienten von ´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar !

Somit:


Vorsicht: Auch Summe über (Einsteinsche Summenkonvention!)


: verallgemeinerte kanonische Verteilung


Die Lagrange- Multiplikatoren sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !

Kontinuierliche Ereignismenge


unter der Nebenbedingung



Durchführung einer Funktionalvariation:



Vergleiche: A. Katz, Principles of Statistial Mechanics

ANMERKUNG Schubotz: Siehe auch [1]

Eigenschaften der verallgemeinerten kanonischen Verteilung

hier: noch rein informationstheoretisch,

später: wichtige Anwendungen in der Thermodynamik

Legendre- Transformation:

Sei eine Bahn !

Dann ist die Geschwindigkeit.

Aus kann die Bahn noch nicht rekonstruiert werden, jedoch aus

mit t=t(M):



hieraus folgt


eingesetzt in


durch Eisnetzen gewinnt man


Jedenfalls:



heißt legendre- Transformierte von .

Anwendung auf die verallgemeinerte kanonische Verteilung:


Normierung:



Also gilt:


und sind durch vollständig parametrisiert.

Nebenbemerkung

Die Verteilung bzw. wirkt auf dem Raum der Zufallsvariablen (diskret) bzw. (kontinuierlich).

sind Parameter.


sind Erwartungswerte


Beispiel:

( Phasenraumelement)

mit als Phasenraum der kanonisch konjugierten Variablen


mikrokanonisch Verteilungsfunktion


als mittlere Energie

Shannon- Information:



Aus



Damit können wir die Legendre- Transformation ( verallgemeinert auf mehrere Variablen) identifizieren:


 Variable


 neue Variable  


 Legendre- Transformierte von 

!

Es folgt:



wegen:



Zusammengefasst:



Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung !!

Betachte Variation:



dann:



Informationsgewinn:



Wir können die variierten Funktionen für kleine Variationen entwickeln:



Vergleiche oben

also folgt:



negativ semidefinit, für alle


Definiere Suszeptibilitätsmatrix:



Diese Matrix beschreibt die Änderung von


bei Variation von



bzw.:



In Matrixschreibweise:



Wegen



Somit:


 ist symmetrisch

Aus



folgt:



Also: negativ- semidefinite quadratisceh Form:



Nebenbemerkung:

Also sind



und



konvex !

Zusammenhang mit der Korrelationsmatrix

 ist Korrelationsmatrix ( siehe oben)


 2. Kumulante


 mit Kumulantenerzeugender



Suszeptibilität !

Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität !!

Also:



Fluktuations/ Dissipations- Theorem:

Fluktuationen: Zufällige Schwankungen um den Mittelwert

Dissipation: Systematische Änderung der Mittelwerte !

Korrektur einer Verteilung durch Zusatzinformationen

Sei


die Verteilung, die 

unter Kenntnis der Nebenbedingungen



minimalisiert ( Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet !)

Jetzt:

Zusatzinformationen ( zusätzliche Mittelwerte beobachtet):



Prinzip der vorurteilsfreien Schätzung

Suche Minimum des Informationsgewinns



unter dieser Nebenbedingung !!

Also:



mit neuen Lagrange- Multiplikatoren



Mit


 folgt:



Da nun die Mittelwerte nicht durch die Zusatzinfo geändert werden muss gelten:



da diese Mittelwerte nicht durch die Zusatzinfo geändert werden !



Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info !

Siehe auch

  1. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.13 (Kap 5.4.3 S46)