Verallgemeinerte kanonische Verteilung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Unicodifying
Zeile 162: Zeile 162:
Normierung:
Normierung:


 
{{Gln|
<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>
<math>\sum\limits_{i}^{{}}{{}}{{P}_{i}}=1\Rightarrow {{e}^{-\Psi }}=\sum_i \exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)\equiv Z</math>}}




Zeile 186: Zeile 186:




<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math>
<math>M\left( x \right)=\sum\limits_{i=1}^{3N}{{}}\left( \frac{{{p}_{i}}^{2}}{2m}+V\left( {{q}_{i}} \right) \right)</math> mikrokanonisch Verteilungsfunktion
mikrokanonisch Verteilungsfunktion




Zeile 201: Zeile 200:




Aus
Aus <math>\begin{align}
 
 
<math>\begin{align}
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
   & \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)=-\ln \sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right) \\  
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
  & \Rightarrow \frac{\partial }{\partial {{\lambda }_{n}}}\Psi =-\frac{\sum\limits_{i}^{{}}{{}}\left( -{{M}_{i}}^{n} \right)\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)}{\sum\limits_{i}^{{}}{{}}\exp \left( -{{\lambda }_{n}}{{M}_{i}}^{n} \right)} \\   
Zeile 218: Zeile 214:




<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math>
<math>\Psi (t)\to \Psi \left( {{\lambda }_{1}},...{{\lambda }_{m}} \right)</math> '''Variable''' <math>{{\lambda }_{n}}</math>
  '''Variable
<math>{{\lambda }_{n}}</math>
'''




<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math>
<math>M\to \left\langle {{M}^{n}} \right\rangle =\frac{\partial \Psi }{\partial {{\lambda }_{n}}}</math> neue Variable  <math>\left\langle {{M}^{n}} \right\rangle </math>
  neue Variable   
<math>\left\langle {{M}^{n}} \right\rangle </math>






<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math>
<math>I\left( M \right)\to I=\Psi -{{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle </math> Legendre- Transformierte von <math>\Psi </math> !
  Legendre- Transformierte von  
<math>\Psi </math>
!


Es folgt:
Es folgt:
Zeile 257: Zeile 245:




Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung !!
Dies ist in der Thermodynamik die {{FB|Gibbsche Fundamentalgleichung}} !!


Betachte Variation:
Betachte Variation:
Zeile 315: Zeile 303:




negativ semidefinit, für alle  
negativ semidefinit, für alle <math>\delta {{\lambda }_{m}}</math>
<math>\delta {{\lambda }_{m}}</math>




Definiere Suszeptibilitätsmatrix:
Definiere {{FB|Suszeptibilitätsmatrix}}:




Zeile 325: Zeile 312:




Diese Matrix beschreibt die Änderung von  
Diese Matrix beschreibt die Änderung von <math>\left\langle {{M}^{m}} \right\rangle </math> bei Variation von <math>{{\lambda }_{n}}</math>:
<math>\left\langle {{M}^{m}} \right\rangle </math>
 
 
bei Variation von  
<math>{{\lambda }_{n}}</math>
:




<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>
:<math>\delta \left\langle {\bar{M}} \right\rangle =\bar{\bar{\eta }}\delta \bar{\lambda }</math>




Zeile 363: Zeile 344:


Somit:
Somit:
<math>{{\eta }^{nm}}</math>  ist symmetrisch


Aus<math>K\left( P+\delta P,P \right)\ge 0</math> folgt:


<math>{{\eta }^{nm}}</math>
  ist symmetrisch
Aus
<math>K\left( P+\delta P,P \right)\ge 0</math>
folgt:


 
:<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>
<math>{{\eta }^{mn}}\delta {{\lambda }_{m}}\delta {{\lambda }_{n}}=\delta \left\langle {{M}^{n}} \right\rangle \delta {{\lambda }_{n}}={{\tilde{\eta }}_{nm}}\delta \left\langle {{M}^{n}} \right\rangle \delta \left\langle {{M}^{m}} \right\rangle \le 0</math>




Zeile 391: Zeile 363:
'''Nebenbemerkung:'''
'''Nebenbemerkung:'''


Also sind
Also sind <math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math> und <math>-\Psi \left( {{\lambda }_{n}} \right)</math> konvex !
 
 
<math>I\left( \left\langle {{M}^{n}} \right\rangle  \right)</math>
 
 
und
 
 
<math>-\Psi \left( {{\lambda }_{n}} \right)</math>
 
 
konvex !


== Zusammenhang mit der Korrelationsmatrix ==
== Zusammenhang mit der Korrelationsmatrix ==

Version vom 11. September 2010, 15:32 Uhr




Motivation

Makroskopische thermodynamische Zustände sind gegeben durch die Mittelwerte von Mikroobservablen M(x), interpretiert als Zufallsvariable.

Rückschlüsse von auf die Wahrscheinlichkeitsverteilung


Methode

Vorurteilsfreie Schätzung ( Jaynes , 1957): (unbiased guess; Prinzip des maximalen Nichtwissens)

  • Verallgemeinerung des Laplacschen Prinzips vom unzureichenden Grund.
    • ( Minimum der Shannon- Information = Maximum des Nichtwissens liefert Gleichverteilung)
  • Jetzt: Zusätzlich zur Normierung der Pi sind die Mittelwerte von m Zufallsvariablen:


Annahme:

Jedes Elementarereignis hat gleiche a-priori- Wahrscheinlichkeit , das heißt OHNE zusätzliche Kenntnisse gilt Gleichverteilung über den .

Informationstheoretisches Prinzip

(nach (Jaynes 1922-1998))

Suche die Wahrscheinlichkeitsverteilung , die unter der Erfüllung aller bekannten Angaben als Nebenbedingung die minimale Information enthält:

Also:

Nebenbed.:

Variation:


Es gilt: von den N Variationen sind nur N-m-1 unabhängig voneinander !

Lagrange- Multiplikator


Lagrange- Multiplikator

Anleitung: Wähle so, dass die Koeffizienten von ´s verschwinden, die übrigen N-(m+1) sind dann frei variierbar !

Somit:


Vorsicht: Auch Summe über (Einsteinsche Summenkonvention!)


: verallgemeinerte kanonische Verteilung


Die Lagrange- Multiplikatoren sind dann durch die m+1 Nebenbedingungen eindeutig bestimmt !

Kontinuierliche Ereignismenge


unter der Nebenbedingung



Durchführung einer Funktionalvariation:



Vergleiche: A. Katz, Principles of Statistial Mechanics

ANMERKUNG Schubotz: Siehe auch [1]

Eigenschaften der verallgemeinerten kanonischen Verteilung

hier: noch rein informationstheoretisch,

später: wichtige Anwendungen in der Thermodynamik

Legendre- Transformation:

Sei eine Bahn !

Dann ist die Geschwindigkeit.

Aus kann die Bahn noch nicht rekonstruiert werden, jedoch aus

mit t=t(M):



hieraus folgt


eingesetzt in


durch Eisnetzen gewinnt man


Jedenfalls:



heißt legendre- Transformierte von .

Anwendung auf die verallgemeinerte kanonische Verteilung:


Normierung:




Also gilt:


und sind durch vollständig parametrisiert.

Nebenbemerkung

Die Verteilung bzw. wirkt auf dem Raum der Zufallsvariablen (diskret) bzw. (kontinuierlich).

sind Parameter.


sind Erwartungswerte


Beispiel:

( Phasenraumelement)

mit als Phasenraum der kanonisch konjugierten Variablen


mikrokanonisch Verteilungsfunktion


als mittlere Energie

Shannon- Information:



Aus


Damit können wir die Legendre- Transformation ( verallgemeinert auf mehrere Variablen) identifizieren:


Variable


neue Variable


Legendre- Transformierte von  !

Es folgt:



wegen:



Zusammengefasst:



Dies ist in der Thermodynamik die Gibbsche Fundamentalgleichung !!

Betachte Variation:



dann:



Informationsgewinn:



Wir können die variierten Funktionen für kleine Variationen entwickeln:



Vergleiche oben

also folgt:



negativ semidefinit, für alle


Definiere Suszeptibilitätsmatrix:



Diese Matrix beschreibt die Änderung von bei Variation von :



bzw.:



In Matrixschreibweise:



Wegen



Somit: ist symmetrisch

Aus folgt:



Also: negativ- semidefinite quadratisceh Form:



Nebenbemerkung:

Also sind und konvex !

Zusammenhang mit der Korrelationsmatrix

 ist Korrelationsmatrix ( siehe oben)


 2. Kumulante


 mit Kumulantenerzeugender



Suszeptibilität !

Also: Die Korrelationsmatrix ist das Negative der Suszeptibilität !!

Also:



Fluktuations/ Dissipations- Theorem:

Fluktuationen: Zufällige Schwankungen um den Mittelwert

Dissipation: Systematische Änderung der Mittelwerte !

Korrektur einer Verteilung durch Zusatzinformationen

Sei


die Verteilung, die 

unter Kenntnis der Nebenbedingungen



minimalisiert ( Vorsicht: Index und Laufende sind ungünstigerweise gleich bezeichnet !)

Jetzt:

Zusatzinformationen ( zusätzliche Mittelwerte beobachtet):



Prinzip der vorurteilsfreien Schätzung

Suche Minimum des Informationsgewinns



unter dieser Nebenbedingung !!

Also:



mit neuen Lagrange- Multiplikatoren



Mit


 folgt:



Da nun die Mittelwerte nicht durch die Zusatzinfo geändert werden muss gelten:



da diese Mittelwerte nicht durch die Zusatzinfo geändert werden !



Das heißt: Der Informationsgewinn entspricht gerade der Änderung der Shannon- Info !

Siehe auch

  1. Brandes,T, Thermodynamik und Statistische Physik, Vorlesung, TU-Berlin, Wintersemester 2006/2007, Gleichung 5.4.13 (Kap 5.4.3 S46)