Zeitliche Translationsinvarianz: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|3|4}}</noinclude> Die Zeit spielt in der klassischen Mechanik im Ggstz zur relativistischen Mechanik gegenüber dem Ort eine S…“
 
*>SchuBot
Einrückungen Mathematik
Zeile 32: Zeile 32:




<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math>
<math>T=\frac{1}{2}\sum\limits_{i}^{{}}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}=}\frac{1}{2}\sum\limits_{j,k}^{{}}{{{T}_{jk}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}}</math> Mit <math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math>
 
 
Mit
 
 
<math>{{T}_{jk}}=\sum\limits_{i=1}^{N}{{{m}_{i}}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{k}}} \right)}</math>
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.
ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.


T ist eine homogene quadratische Funktion der
T ist eine homogene quadratische Funktion der
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math>
<math>{{\dot{q}}_{1}}...{{\dot{q}}_{f}}</math> Also <math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math> Nach <math>\lambda </math>
 
 
Also
<math>T\left( \lambda {{{\dot{q}}}_{1}},...,\lambda {{{\dot{q}}}_{f}} \right)={{\lambda }^{2}}T\left( {{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}} \right)</math>
 
 
Nach
<math>\lambda </math>
wird partiell abgelitten, dann wird
wird partiell abgelitten, dann wird
<math>\lambda =1</math>
<math>\lambda =1</math>
Zeile 84: Zeile 70:




<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math>
<math>\frac{dL}{dt}=\sum\limits_{k}^{{}}{\left( \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\ddot{q}}}_{k}}+\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}} \right)}=\frac{d}{dt}\sum\limits_{k}^{{}}{\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}{{{\dot{q}}}_{k}}=2\frac{dT}{dt}}</math> wegen <math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>
wegen
<math>\sum\limits_{k=1}^{N}{\left( \frac{\partial L}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T</math>





Version vom 12. September 2010, 17:09 Uhr



Die Zeit spielt in der klassischen Mechanik im Ggstz zur relativistischen Mechanik gegenüber dem Ort eine Sonderrolle.

Deshalb ist eine direkte Anwendung des Noether- Theorems nicht moeglich.

Zeitliche Translationsinvarianz ist erfüllt, falls:

  1. die Zwangsbedingungen die Zeit t nicht explizit enthalten:


Dabei ist Funktion von q1...qf

  1. Nebenbedingung: Aus der Existenz eines Potenzials der eingeprägten Kräfte folgt NICHT automatisch die Erhaltung der Energie, da die Zwangsbedingungen die Zeit enthalten könnten.

Wenn die Zwangsbedingungen die Zeit enthalten, so ist die Energie nicht enthalten.



Kinetische Energie:


Mit ist abhängig von den q1...qf im Gegensatz zum Fall der kleinen Schwingungen, der eingangs behandelt wurde.

T ist eine homogene quadratische Funktion der Also Nach wird partiell abgelitten, dann wird gesetzt.



Obere Äquivalenz ist der sogenannte Eulersche Satz

Da V unabhängig von gilt auch:



Zur totalen Zeitableitung von L:



Somit:


wegen


Somit:



Zeitranslationsinvarianz bedingt also Energieerhaltung !

Oder: Skleronome Zwangsbedingungen: bedingen: E=T+V=constant

Nebenbemerkung

Die Aussage folgt auch aus dem Noether-Theorem, wenn man noch den folgenden Trick anwendet: (Scheck, Aufgabe 2.17)

Mache t zu einer q-artigen Variablen durch eine parametrisierte Darstellung:


Als Lagrangefunktion muss man sich definieren:



soll invariant unter Zeittranslationen sein:



Dann gilt:

  1. Hamiltonsches Prinzip auf

angewandt:



2. Noethersches Theorem für

Integral der Bewegung I:




Also Erhaltung der Energie durch zeitliche Translationsinvarianz