Räumliche Isotropie
Der Artikel Räumliche Isotropie basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 3.Kapitels (Abschnitt 3) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Nebenbedingung: konservative Kräfte, keine Zwangsbedingungen
Es erfolgt eine Drehung des Bezugssystems um den Winkel
um die z- Achse.
An einer Skizze kann man sich schnell verdeutlichen:
Dabei gilt:
Rotationsinvarianz für die Drehung um die z- Achse:
Betrachten wir infinitesimale Transformationen (Drehungen um die z- Achse mit kleinen Winkeln
Dabei gilt die rechtsseitige Taylorentwicklung für kleine Winkel. Wir schreiben
als Erzeugende für infinitesimale Drehungen um die z- Achse.
Somit folgt:
Formal schreibt man:
Rotationsinvarianz der Lagrange-Funktion
ist rotationsinvariant, da nur von
abhängig und die Drehmatrix ändert die Abstände nicht.
(Drehungen sind orthogonale Transformationen).
wegen:
Als zyklische Permutation gilt dann jedoch:
als gesamtes Drehmoment und der Tatsache, dass die z-Komponente des äußeren resultierenden Drehmomentes verschwindet:
Interpretation nach dem Noetherschen Theorem
Also: Rotationsinvarianz entspricht Drehimpulserhaltung
Andere Betrachtungsweise
Wähle
als verallgemeinerte Koordinate
Trafo:
Für infinitesimale Drehung um z-Achse.
Invarianz Erhaltungssätze
äquivalent zum Erhaltungssatz
Der Winkel ist also eine zyklische Variable.
Berechnet man den verallgemeinerten konjugierten Impuls zu
so ergibt sich:
Es ergibt sich also wieder die z-Komponente des Drehimpulses als verallgemeinerter Impuls.
Nebenbedingung:
Wir betrachteten hier eine passive Drehung des Korodinatensystems. Die Aktive Drehung des Koordinatensystems ist jedoch äquivalent. Das bedeutet, wir drehen aktiv alle Massenpunkte mit
Dazu gehören dann die konjugierten Impulse +lz
Beispiel:
N Teilchen mit einer inneren Paarwechselwirkung, die nur vom Abstand abhängt:
Rotationsinvarianz gegen Drehung um alle Achsen:
für beliebige Achsen, da
Also ist der resultierende Drehimpuls
eine Erhaltungsgröße
Erzeugende der infinitesimalen Drehung um z-Achse
Die infinitesimale Drehung läßt sich schreiben als:
Mit der Erzeugenden
Bei einer Drehung um den endlichen Winkel
gilt:
Es gilt:
mit Definition
Beweis:
Für
Mit Hilfe der Taylorreihen für Sinus und Cosinus folgt dann:
Analog behandelbar ist die Drehung um die x-Achse
Erzeugende:
Hier gewinnen wir die Drehmatrix:
Bei der y- Achse gilt:
Erzeugende:
Hier gewinnen wir die Drehmatrix:
Beliebige Drehungen um den Winkel
mit der Drehachse
Die Drehmatrizen
bilden nun eine 3- parametrige
stetige, diffbare
und orthogonale Gruppe.
Eine solche Gruppe heißt Lie- Gruppe oder kontinuierliche Gruppe in drei reellen Dimensionen
SO(3)
als Orthogonalitätsbedingung, so dass
zum Ausschluß von Raumspiegelungen.
Die Erzeugenden
der Drehgruppe bilden eine Lie- Algebra mit dem Lieschen Produkt (=Kommutator):
i,k=x,y,z
Dabei vertauschen 2 Drehungen um unterschiedliche Achsen nicht. Das bedeutet, das Ergebnis hängt von der Reihenfolge ab!:
→ zyklische Permutation des Lieschen Produktes