Räumliche Translationsinvarianz: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|3|2}}</noinclude> Seien die Kräfte konservativ und seien keine Randbedingungen: <math>L=\frac{1}{2}\sum\limits_{i=1}^{N}{{{…“
 
*>SchuBot
Einrückungen Mathematik
Zeile 56: Zeile 56:




<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)={{q}_{1}}{{\bar{e}}_{x}}+\Delta {{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>
<math>{{\bar{r}}_{i}}={{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)={{q}_{1}}{{\bar{e}}_{x}}+\Delta {{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math> mit <math>{{q}_{1}}{{\bar{e}}_{x}}</math>
 
 
mit
 
 
<math>{{q}_{1}}{{\bar{e}}_{x}}</math>
  als Schwerpunktskoordinate und
  als Schwerpunktskoordinate und


Zeile 76: Zeile 70:




<math>\frac{\partial }{\partial {{{\dot{q}}}_{1}}}{{\dot{\bar{r}}}_{i}}=\frac{\partial }{\partial {{q}_{1}}}{{\bar{r}}_{i}}={{\bar{e}}_{x}}</math>
<math>\frac{\partial }{\partial {{{\dot{q}}}_{1}}}{{\dot{\bar{r}}}_{i}}=\frac{\partial }{\partial {{q}_{1}}}{{\bar{r}}_{i}}={{\bar{e}}_{x}}</math> wegen <math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{k}^{{}}{{}}\frac{\partial }{\partial {{q}_{k}}}{{\bar{r}}_{i}}{{\dot{q}}_{k}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>
wegen
<math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{k}^{{}}{{}}\frac{\partial }{\partial {{q}_{k}}}{{\bar{r}}_{i}}{{\dot{q}}_{k}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}</math>




Zeile 144: Zeile 136:




<math>I(\bar{r},\dot{\bar{r}})=\frac{\partial L}{\partial \dot{\bar{r}}}\cdot {{\frac{d{{h}^{s}}}{ds}}_{{}}}=\frac{\partial L}{\partial \dot{x}}={{P}_{x}}=const</math>
<math>I(\bar{r},\dot{\bar{r}})=\frac{\partial L}{\partial \dot{\bar{r}}}\cdot {{\frac{d{{h}^{s}}}{ds}}_{{}}}=\frac{\partial L}{\partial \dot{x}}={{P}_{x}}=const</math> wegen <math>\begin{align}
 
 
wegen
 
 
<math>\begin{align}
   & \frac{\partial L}{\partial \dot{\bar{r}}}={{\nabla }_{{\dot{r}}}}L \\
   & \frac{\partial L}{\partial \dot{\bar{r}}}={{\nabla }_{{\dot{r}}}}L \\
  & {{\frac{d{{h}^{s}}}{ds}}_{{}}}={{{\bar{e}}}_{x}} \\
  & {{\frac{d{{h}^{s}}}{ds}}_{{}}}={{{\bar{e}}}_{x}} \\

Version vom 12. September 2010, 17:07 Uhr



Seien die Kräfte konservativ und seien keine Randbedingungen:



Eine Translation in Richtung x ist damit eine Translation der Form:



Der Parameter s ist dabei beliebig.

Die Translationsinvarianz entlang der x- Achse bewirkt nun:



Das bedeutet aber: es darf keine äußere Kraft in x- Richtung geben !

Für die Transformation gilt:



(Identität)



Für unser Integral der Bewegung gilt jedoch:



Fazit: die Translationsinvarianz in x- Richtung bestimmt die Erhaltung der x-Komponente des Gesamtimpulses.

Dieser Zusammenhang ist leicht für die anderen Komponenten zu zeigen.

Dies kann auch umgekehrt betrachtet werden:

Wähle q1=s als verallgemeinerte Koordinate:

Nun gilt die Transformation:


mit

als Schwerpunktskoordinate und


als Relativpositionen.

Es folgt:



wegen


Invarianz Erhaltungssatz


 äquivalent zum Erhaltungssatz


Allgemein heißt der zur Koordinate qj konjugierte verallgemeinerte Impuls.

Falls gilt dass , wenn also die Lagrangefunktion invariant gegen q1- Änderungen ist, dann nennt man q1 eine zyklische Koordinate. der zu q1 konjugierte Impuls ist in diesem Fall eine Erhaltungsgröße .

Hier:



Verallgemeinerung auf Nichtkonservative Kräfte


Xi kennzeichnet dabei die Kraft. Nun steht rechts also die resultierende Kraft in x- Richtung. Existiert keine resultierende Kraft in x- Richtung ( Translationsinvarianz in x- Richtung), so gilt:



Invarianz sagt



Nebenbedingung für das fehlen konservativer Kräfte ( Falls Q1 konservative Kraft ist)



Beispiel: ein Teilchen im Potenzial V=V(y,z)

Das Potenzial hänge nicht von x ab:


Daraus folgt:


In diesem Fall existiert ein Integral der Bewegung:


wegen


Beispiel: 2 Teilchen mit innerer Paarwechselwirkung

 Das Potenzial kann auch anisotrop sein.

Es sollen keine äußeren Kräfte wirken, so dass das Potenzial unabhängig von den Schwerpunktskoordinaten wird.

Gleichzeitig soll Translationsinvarianz entlang x-, - und z- Richtung vorliegen:


für alle i = x,y,z

Somit existieren gleich drei Integrale der Bewegung:



Dies ist, aufgrund des Fehlens äußerer Kräfte, gerade der Schwerpunkts- Erhaltungssatz:



Mit den Schwerpunktskoordinaten



Und der Gesamtmasse