Thermodynamischer Limes: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Interpunktion, replaced: ! → ! (2), ( → (
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 3: Zeile 3:
Grenzfall eines unendlich großen Systems.
Grenzfall eines unendlich großen Systems.


Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren !
Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren!


<u>'''Voraussetzung:'''</u>
<u>'''Voraussetzung:'''</u>
Zeile 12: Zeile 12:
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
<math>S(\alpha z)=\alpha S(z)</math> damit:
:<math>S(\alpha z)=\alpha S(z)</math> damit:


:<math>\begin{align}
:<math>\begin{align}
Zeile 28: Zeile 28:
  \end{align}</math>
  \end{align}</math>
   
   
Definitionsgleichung der intensiven Variablen !!}}
Definitionsgleichung der intensiven Variablen!!}}


==Anwendung auf einfache thermische Systeme==
==Anwendung auf einfache thermische Systeme==
<math>\begin{align}
:<math>\begin{align}


& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
Zeile 45: Zeile 45:
'''Energiedarstellung''':
'''Energiedarstellung''':


<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>
:<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>


{{Satz|Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.|
{{Satz|Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.|
{{FB|Fluktuations-Dissipations-Theorem}}
{{FB|Fluktuations-Dissipations-Theorem}}


<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


relative Schwankung:
relative Schwankung:


<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


Wegen der Homogenität von
Wegen der Homogenität von


<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>
:<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>


gilt:
gilt:


<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math>
:<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math> also <math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>
 
also
 
<math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>


'''Relative Schwankung für '''<math>\alpha z</math>, <math>\alpha \to \infty </math>:
'''Relative Schwankung für '''<math>\alpha z</math>, <math>\alpha \to \infty </math>:
Zeile 106: Zeile 102:
====Folgerung====
====Folgerung====


Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.
Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.

Aktuelle Version vom 12. September 2010, 23:56 Uhr




Grenzfall eines unendlich großen Systems.

Dabei muss der Grenzprozess α so durchgeführt werden, dass alle extensiven Makroobservablen MnαMn die gleiche Koordinatendiletation α erfahren!

Voraussetzung:

Homogenes Makrosystem, also z:=(M1,...,Mm) und S(z) sind extensiv: S(αz)=αS(z) eine homogene Funktion in allen Variablen!


Satz:

Die Entropiegrundfunktion
S(z)=n=1mgn(z)Mn

mit gn(z)=gn(αz) (dilatationsinvariant)

Beweis:

S(αz)=αS(z) damit:
S(αz)α=α(αS(z))=S(z)S(αz)α=nS(αz)(αMn)Mn
speziell für α=1:
nS(z)(Mn)Mn=S(z)gn(z):=S(z)(Mn)=S(αz)(αMn)=:gn(αz)

Definitionsgleichung der intensiven Variablen!!


Anwendung auf einfache thermische Systeme

S(U,V,N¯α)=SUU+SVV+SN¯αN¯α=1TU+pTVμαTN¯αSU=1TSV=pTSN¯α=μαT

Energiedarstellung:

U(S,V,N¯α)=TSpV+μαN¯α


Satz:

Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.

Beweis:

Fluktuations-Dissipations-Theorem

(ΔMn)2=Mnλn=2Ψλn2

relative Schwankung:

(ΔMn)2Mn2=1Mn22Ψλn2

Wegen der Homogenität von

S=k(λnMnΨ)

gilt:

Ψ(αz)=αΨ(z) also 2Ψλn2(αz)=α2Ψλn2(z)

Relative Schwankung für αz, α:

limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn22Ψ(z)λn2<limα(αΔMn)2αMn2=limαα1αMn22Ψ(z)λn2=0


Folgerung

Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.