Lagrangegleichungen 2. Art: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
Einrückungen Mathematik
Zeile 10: Zeile 10:




<math>\sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\delta {{{\bar{r}}}_{i}}}=\sum\limits_{j}{{}}\left( \sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}} \right)\delta {{q}_{j}}=\sum\limits_{j}{{}}\sum\limits_{i}^{{}}{\left\{ \frac{d}{dt}\left( {{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right)-{{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{d}{dt}\left( \frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right) \right\}\delta {{q}_{j}}_{{}}}</math>
<math>\sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\delta {{{\bar{r}}}_{i}}}=\sum\limits_{j}{{}}\left( \sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}}} \right)\delta {{q}_{j}}=\sum\limits_{j}{{}}\sum\limits_{i}^{{}}{\left\{ \frac{d}{dt}\left( {{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right)-{{m}_{i}}{{{\dot{\vec{r}}}}_{i}}\frac{d}{dt}\left( \frac{\partial }{\partial {{q}_{j}}}{{{\bar{r}}}_{i}} \right) \right\}\delta {{q}_{j}}_{{}}}</math> Mit <math>\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\vec{v}}_{i}}=\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\left[ \sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{{\bar{r}}}_{i}} \right]}_{{}}}=\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math> und <math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{\dot{q}}_{j}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{{\vec{v}}}_{i}} \right)}{{\dot{q}}_{j}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}\Rightarrow \frac{d}{dt}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{\partial }{\partial {{q}_{j}}}{{\vec{v}}_{i}}</math>
 
 
Mit
 
 
<math>\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\vec{v}}_{i}}=\frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{\left[ \sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}}{{{\dot{q}}}_{j}} \right)}+\frac{\partial }{\partial t}{{{\bar{r}}}_{i}} \right]}_{{}}}=\frac{\partial }{\partial {{q}_{j}}}{{\bar{r}}_{i}}({{q}_{1}},...,{{q}_{f}},t)</math>
 
 
und
 
 
<math>{{\dot{\bar{r}}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{\dot{q}}_{j}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}=\sum\limits_{j=1}^{f}{\left( \frac{\partial }{\partial {{{\dot{q}}}_{j}}}{{{\vec{v}}}_{i}} \right)}{{\dot{q}}_{j}}+\frac{\partial }{\partial t}{{\bar{r}}_{i}}\Rightarrow \frac{d}{dt}\left( \frac{\partial {{{\bar{r}}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{\partial }{\partial {{q}_{j}}}{{\vec{v}}_{i}}</math>





Version vom 12. September 2010, 17:06 Uhr




Betrachten wir wieder das d'Alembertsche Prinzip:



Linke Seite:


Mit und


Beweis für die letzte Deduktion:



Somit ergibt sich für die linke Seite



Ziel ist es, diese Seite durch die gesamte Kinetische Energie auszudrücken:




Somit folgt:





Der T-abhängige Ausdruck ist jedoch in völlig frei variierbar. Somit ist keine lineare Abhängigkeit der Variationen über verschiedene j gegeben.

Jedes ist für sich frei variierbar, so dass der Ausdruck auf der linken Seite für sich Null wird:



heißt Lagrange- Gleichungen 2. Art


Die Lagrangegleichungen der zweiten Art können aus dem d ´Alembertschen Prinzip nur für holonome Zwangsbedingungen gewonnen werden (im Gegensatz zur Lagrangegleichung erster Art).

Dies liegt daran, dass nur für holonome Zwangsbedingungen generalisierte Koordinaten definiert werden können:

Spezialfall konservative Kräfte


Dies bedingt jedoch:



Wir können uns die Lagrangefunktion derart definieren, dass:



Es folgt:



Die sagenumwobene Lagrangegleichung 2. Art für konservative Kräfte !

Anmerkung:

  • die genannte Lagrangegleichung L ist nicht eindeutig festgelegt
  • L=T-V ist nur eine mögliche Form
  • Dabei ist die kinetische Energie nur für skleronome Zwangsbedingungen eine homogene Bilinearform in


Anwendungsschema für Lagrangegleichungen zweiter Art:

MISSING

Die Atwoodsche Fallmaschine

Generalisierte Koordinate: q



Beispiel 2:

Eine Masse m rotiert mit Winkelgeschwindigkeit w an einem Faden der Länge Ro, welcher mit Geschwindigkeit c durch ein Loch gezogen wird (rheonome Zwangsbedingung).

Eine Masse m rotiert mit Winkelgeschwindigkeit w an einem Faden der Länge Ro, welcher mit Geschwindigkeit c durch ein Loch gezogen wird (rheonome Zwangsbedingung).

Generalisierte Koordinate q ist der Winkel



Dahin kommt man im Übrigen aus:




Somit haben wir eine Bewegungsgleichung für die Winkelgeschwindigkeit gefunden:



Bestimmung der Konstanten aus den Anfangsbedingungen liefert:

Drehimpuls:



Durch Integration gewinnt man:



Das heißt, wie zu erwarten war, die Masse dreht sich immer schneller, je kürzer der Faden wird (Drehimpulserhaltung!)