Thermodynamische Zustände: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 57: Zeile 57:
Durch die bedingte Wahrscheinlichkeit <math>P\left( {{\xi }_{t}}|{{C}_{t=0}} \right)</math>
Durch die bedingte Wahrscheinlichkeit <math>P\left( {{\xi }_{t}}|{{C}_{t=0}} \right)</math>


für <math>\xi \left( t \right)</math>, falls  C zur Zeit t=0 bekannt ist, sogenannte "progressive Wahrscheinlichkeit "  für t>0 wird eine '''{{FB|'''Zeitrichtung'''}}''' ausgezeichnet!
für <math>\xi \left( t \right)</math>, falls  C zur Zeit t=0 bekannt ist, sogenannte "progressive Wahrscheinlichkeit "  für t>0 wird eine '''{{FB|Zeitrichtung}}''' ausgezeichnet!


Die Information über den Mikrozustand <math>\xi \left( t \right)</math> kann nicht zunehmen mit wachsender zeit t, falls das System seit der letzten Beobachtung isoliert ist:
Die Information über den Mikrozustand <math>\xi \left( t \right)</math> kann nicht zunehmen mit wachsender zeit t, falls das System seit der letzten Beobachtung isoliert ist:

Version vom 19. September 2010, 12:34 Uhr




Thermodynamische Systeme haben sehr viele Freiheitsgrade

Die Mikrozustände bilden die Ereignisalgebra

z.B.

N groß!

Thermodynamischer Zustand

(= Makrozustand)

wenige thermodynamische Variablen (= makroskopische Variablen/ Observablen = Messgrößen), die dadurch ausgezeichnet sind, dass sie sich langsam ändern auf der Zeitskala, auf der die Messinstrumente ins Gleichgewicht relaxieren.

Zeitskalentrennung zwischen der makroskopischen Langzeitskala und der mikroskopischen Kurzzeitskala


Beispiel:

Temperatur ist thermodynamisch Variable;

Temperaturänderung muss langsam sein gegen die Relaxation der Quecksilbersäule im Thermometer, damit eine thermodynamische Beschreibung überhaupt möglich ist.


Nebenbemerkung

Diese Definition umfasst Nichtgleichgewichts- und Gleichgewichtszustände (zeitlich invariant), stellt sich nach hinreichend langer Zeit ein, falls kein Energie- oder Materiefluss durch das System von außen aufgeprägt ist!


Fundmanetales Problem

Die mikroskopische Dynamik ist reversibel, aber

makroskopische Thermodynamik enthält irreversible Prozesse (z.B. Relaxation ins thermodynamische Gleichgewicht).

{{DefDefinition:

Dynamik heisst reversibel, falls sich bei Zeitumkehr ein physikalisch möglicher Prozess ergibt!|reversibel}}

Nicht: Prozess x(t) invariant gegen Zeitumkehr t → -t!, das heisst:


Beispiel für irreversible Prozesse: Wärmeleitung/ Diffusion


Statistische Beschreibung der Mikrozustände

Wahrscheinlichkeitsverteilung

über den Mikrozuständen

beschreibt die Kenntnis des Beobachters. In der Regel kennt der Beobachter die Werte einiger makroskopischer Observablen zur Zeit t=0, sowie die Gesetze der Mikrodynamik

Kenntnis der Observablen zusammengefasst sei C:

Problem der Irreversibilität

Durch die bedingte Wahrscheinlichkeit

für , falls C zur Zeit t=0 bekannt ist, sogenannte "progressive Wahrscheinlichkeit " für t>0 wird eine 'Zeitrichtung' ausgezeichnet!

Die Information über den Mikrozustand kann nicht zunehmen mit wachsender zeit t, falls das System seit der letzten Beobachtung isoliert ist:

obgleich die mikroskopische Dynamik reversibel ist (makroskopische Irreversibilität)