Thermodynamischer Limes: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
*>SchuBot
K Interpunktion, replaced: ! → ! (2), ( → (
 
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
Grenzfall eines unendlich großen Systems.
Grenzfall eines unendlich großen Systems.


Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren !
Dabei muss der Grenzprozess <math>\alpha \to \infty </math> so durchgeführt werden, dass alle extensiven Makroobservablen <math>\left\langle {{M}^{n}} \right\rangle \to \alpha \left\langle {{M}^{n}} \right\rangle </math> die gleiche Koordinatendiletation <math>\alpha </math> erfahren!


<u>'''Voraussetzung:'''</u>
<u>'''Voraussetzung:'''</u>
Zeile 12: Zeile 12:
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
:<math>S(z)=\sum\limits_{n=1}^{m}{{}}{{g}_{n}}(z)\left\langle {{M}^{n}} \right\rangle </math>
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
mit <math>{{g}_{n}}(z)={{g}_{n}}(\alpha z)</math> (dilatationsinvariant)|
<math>S(\alpha z)=\alpha S(z)</math> damit:
:<math>S(\alpha z)=\alpha S(z)</math> damit:


:<math>\begin{align}
:<math>\begin{align}
Zeile 28: Zeile 28:
  \end{align}</math>
  \end{align}</math>
   
   
Definitionsgleichung der intensiven Variablen !!}}
Definitionsgleichung der intensiven Variablen!!}}


====Anwendung auf einfache thermische Systeme====
==Anwendung auf einfache thermische Systeme==
<math>\begin{align}
:<math>\begin{align}


& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
& S\left( U,V,{{{\bar{N}}}^{\alpha }} \right)=\frac{\partial S}{\partial U}U+\frac{\partial S}{\partial V}V+\frac{\partial S}{\partial {{{\bar{N}}}^{\alpha }}}{{{\bar{N}}}^{\alpha }}=\frac{1}{T}U+\frac{p}{T}V-\frac{{{\mu }_{\alpha }}}{T}{{{\bar{N}}}^{\alpha }} \\
Zeile 43: Zeile 43:
\end{align}</math>
\end{align}</math>


Energiedarstellung:
'''Energiedarstellung''':
 
<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>


'''Satz: '''Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.
:<math>U\left( S,V,{{{\bar{N}}}^{\alpha }} \right)=TS-pV+{{\mu }_{\alpha }}{{\bar{N}}^{\alpha }}</math>


<u>'''Beweis: '''</u>Fluktuations - Dissipations- Theorem
{{Satz|Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.|
{{FB|Fluktuations-Dissipations-Theorem}}


<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle =-\frac{\partial \left\langle {{M}^{n}} \right\rangle }{\partial {{\lambda }_{n}}}=-\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


relative Schwankung:
relative Schwankung:


<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>
:<math>\frac{\left\langle {{\left( \Delta {{M}^{n}} \right)}^{2}} \right\rangle }{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}=-\frac{1}{{{\left\langle {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}</math>


Wegen der Homogenität von
Wegen der Homogenität von


<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>
:<math>S=k\left( {{\lambda }_{n}}\left\langle {{M}^{n}} \right\rangle -\Psi  \right)</math>


gilt:
gilt:


<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math>
:<math>\Psi \left( \alpha z \right)=\alpha \Psi \left( z \right)</math> also <math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>


also
'''Relative Schwankung für '''<math>\alpha z</math>, <math>\alpha \to \infty </math>:


<math>\frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( \alpha z \right)=\alpha \frac{{{\partial }^{2}}\Psi }{\partial {{\lambda }_{n}}^{2}}\left( z \right)</math>
:<math>\begin{align}
 
'''Relative Schwankung für '''<math>\alpha z</math>
 
, <math>\alpha \to \infty </math>
 
:
 
<math>\begin{align}


& \begin{matrix}
& \begin{matrix}
Zeile 107: Zeile 98:
\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\
\end{matrix}\alpha \frac{1}{{{\left\langle \alpha {{M}^{n}} \right\rangle }^{2}}}\frac{{{\partial }^{2}}\Psi \left( z \right)}{\partial {{\lambda }_{n}}^{2}}=0 \\


\end{align}</math>
\end{align}</math>}}


====Folgerung====
====Folgerung====


Im thermodynamischen Limes sind die verschiedenen Verteilungen ( mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.
Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.

Aktuelle Version vom 13. September 2010, 00:56 Uhr




Grenzfall eines unendlich großen Systems.

Dabei muss der Grenzprozess so durchgeführt werden, dass alle extensiven Makroobservablen die gleiche Koordinatendiletation erfahren!

Voraussetzung:

Homogenes Makrosystem, also und sind extensiv: eine homogene Funktion in allen Variablen!


Satz:

Die Entropiegrundfunktion

mit (dilatationsinvariant)

Beweis:

damit:
speziell für :

Definitionsgleichung der intensiven Variablen!!


Anwendung auf einfache thermische Systeme

Energiedarstellung:


Satz:

Im thermodynamischen Limes verschwinden die relativen Schwankungen der extensiven Observablen.

Beweis:

Fluktuations-Dissipations-Theorem

relative Schwankung:

Wegen der Homogenität von

gilt:

also

Relative Schwankung für , :


Folgerung

Im thermodynamischen Limes sind die verschiedenen Verteilungen (mikrokanonisch, kanonisch, großkanonisch) äquivalent, da die relativen Schwankungen, das Unterscheidungsmerkmal der Verteilungen überhaupt, verschwinden.