Zustände mit Bahn- und Spinvariablen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:


: <math>\begin{align}
: <math>\begin{align}
& \left| nlm{{m}_{s}} \right\rangle =\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle \in {{H}_{B}}\times {{H}_{S}} \\
& \left| nlm{{m}_{s}} \right\rangle =\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle \in {{H}_{B}}\times {{H}_{S}} \\
& \left| nlm \right\rangle \in {{H}_{B}} \\
& \left| nlm \right\rangle \in {{H}_{B}} \\
& \left| {{m}_{s}} \right\rangle \in {{H}_{S}} \\
& \left| {{m}_{s}} \right\rangle \in {{H}_{S}} \\
\end{align}</math>
\end{align}</math>


Zeile 19: Zeile 15:
(äquivalente Sprechweise):
(äquivalente Sprechweise):


: <math>\left\langle {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{1}}{{n}_{2}} \right\rangle =\left\langle {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{1}} \right\rangle \left\langle {{m}_{1}}{{m}_{2}} \right|\left| {{n}_{2}} \right\rangle =\left\langle {{m}_{1}} \right|\left| {{n}_{1}} \right\rangle \left\langle {{m}_{2}} \right|\left| {{n}_{2}} \right\rangle </math>
: <math>\left\langle {{m}_{1}}{{m}_{2}} | {{n}_{1}}{{n}_{2}} \right\rangle =\left\langle {{m}_{1}}{{m}_{2}} | {{n}_{1}} \right\rangle \left\langle {{m}_{1}}{{m}_{2}} | {{n}_{2}} \right\rangle =\left\langle {{m}_{1}} | {{n}_{1}} \right\rangle \left\langle {{m}_{2}} | {{n}_{2}} \right\rangle </math>


Ein beliebiger Zustand kann nach Spin- Basis Zuständen <math>\left| \uparrow \right\rangle ,\left| \downarrow \right\rangle </math>
Ein beliebiger Zustand kann nach Spin- Basis Zuständen <math>\left| \uparrow \right\rangle ,\left| \downarrow \right\rangle </math>
Zeile 92: Zeile 88:


Hamilton- Operator für Bahn:
Hamilton- Operator für Bahn:
<math>{{\hat{H}}_{B}}=\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r)</math>
:<math>{{\hat{H}}_{B}}=\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r)</math>
Elektron mit Ladung e{{H}_{B}}</math>
Elektron mit Ladung e{{H}_{B}}</math>


Hamilton- Operator für Spin:
Hamilton- Operator für Spin:
<math>\begin{align}
:<math>\begin{align}
& {{{\hat{H}}}_{S}}=-\hbar {{\omega }_{l}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& {{{\hat{H}}}_{S}}=-\hbar {{\omega }_{l}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& {{\omega }_{l}}=\frac{\left| e \right|B}{2{{m}_{0}}} \\
& {{\omega }_{l}}=\frac{\left| e \right|B}{2{{m}_{0}}} \\
\end{align}</math>
\end{align}</math>


<math>{{\hat{H}}_{S}}</math>
:<math>{{\hat{H}}_{S}}</math>
wirkt dabei nur im Hilbertraum <math>{{H}_{S}}</math>
wirkt dabei nur im Hilbertraum <math>{{H}_{S}}</math>


Zeile 108: Zeile 104:
:
:


<math>\begin{align}
:<math>\begin{align}
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}} \\
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}} \\
& \alpha =1,2 \\
& \alpha =1,2 \\
Zeile 118: Zeile 114:


Es gilt (äquivalente Darstellung):
Es gilt (äquivalente Darstellung):
<math>\begin{align}
:<math>\begin{align}
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}\Leftrightarrow \left( {{{\hat{H}}}_{B}}\times 1 \right){{\left| \Psi \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi \right\rangle }_{t}} \\
& {{{\hat{H}}}_{B}}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{\alpha }} \right\rangle }_{t}}\Leftrightarrow \left( {{{\hat{H}}}_{B}}\times 1 \right){{\left| \Psi \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi \right\rangle }_{t}} \\
& \alpha =1,2 \\
& \alpha =1,2 \\
Zeile 124: Zeile 120:


Dabei
Dabei
<math>1</math>
:<math>1</math>
= Einsoperator im Spinraum -> Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum: <math>1=\left( \begin{matrix}
= Einsoperator im Spinraum Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum: <math>1=\left( \begin{matrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
Zeile 134: Zeile 130:
:
:


<math>\left( {{{\hat{H}}}_{B}}\times 1+{{{\hat{H}}}_{S}} \right){{\left| \Psi \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi \right\rangle }_{t}}</math>
:<math>\left( {{{\hat{H}}}_{B}}\times 1+{{{\hat{H}}}_{S}} \right){{\left| \Psi \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| \Psi \right\rangle }_{t}}</math>


In Matrix- Darstellung:
In Matrix- Darstellung:
<math>\begin{align}
:<math>\begin{align}
& \left( \begin{matrix}
& \left( \begin{matrix}
{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0 \\
{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0 \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \\
\end{matrix} \right)\left( \begin{matrix}
\end{matrix} \right)\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right) \\
\end{matrix} \right) \\
Zeile 159: Zeile 150:
== Pauli Gleichung ==
== Pauli Gleichung ==


'''Anwendung: '''- einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld <math>\bar{B}=B{{\bar{e}}_{3}}</math>
'''Anwendung: '''- einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial (Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld <math>\bar{B}=B{{\bar{e}}_{3}}</math>


: <math>\hat{H}={{\hat{H}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}</math>
: <math>\hat{H}={{\hat{H}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{\hat{\bar{\sigma }}}_{3}}</math>
Zeile 166: Zeile 157:


: <math>\begin{align}
: <math>\begin{align}
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[\frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}\cong \left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
& \hat{H}\cong \left[\frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
Zeile 175: Zeile 165:
Wie man sieht bekommt man durch den Korrekturterm <math>\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right)</math>
Wie man sieht bekommt man durch den Korrekturterm <math>\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right)</math>
eine Korrektur an die Energie.
eine Korrektur an die Energie.
'''Für B=0 -> Eigenzustände mit Spin'''
'''Für B=0 Eigenzustände mit Spin'''
<math>\left( {{H}_{0}}\times 1 \right)\left| nlm{{m}_{s}} \right\rangle ={{E}_{nl}}\left| nlm{{m}_{s}} \right\rangle </math>
:<math>\left( {{H}_{0}}\times 1 \right)\left| nlm{{m}_{s}} \right\rangle ={{E}_{nl}}\left| nlm{{m}_{s}} \right\rangle </math>


Insgesamt <math>2\left( 2l+1 \right)</math>
Insgesamt <math>2\left( 2l+1 \right)</math> fach entartet. Beim H- Atom: zusätzliche l- Entartung
fach entartet. Beim H- Atom: zusätzliche l- Entartung
:<math>B\ne 0</math>
<math>B\ne 0</math>


<math>\begin{align}
:<math>\begin{align}
& \hat{H}\left| nlm{{m}_{s}} \right\rangle ={{H}_{0}}\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle -\frac{\left| e \right|B}{2{{m}_{0}}}\left\{ \left( {{{\hat{L}}}_{3}}\left| nlm \right\rangle \right)\left| {{m}_{s}} \right\rangle +\hbar \left( {{{\hat{\bar{\sigma }}}}_{3}}\left| {{m}_{s}} \right\rangle \right)\left| nlm \right\rangle \right\} \\
& \hat{H}\left| nlm{{m}_{s}} \right\rangle ={{H}_{0}}\left| nlm \right\rangle \left| {{m}_{s}} \right\rangle -\frac{\left| e \right|B}{2{{m}_{0}}}\left\{ \left( {{{\hat{L}}}_{3}}\left| nlm \right\rangle \right)\left| {{m}_{s}} \right\rangle +\hbar \left( {{{\hat{\bar{\sigma }}}}_{3}}\left| {{m}_{s}} \right\rangle \right)\left| nlm \right\rangle \right\} \\
& {{{\hat{L}}}_{3}}\left| nlm \right\rangle =\hbar m\left| nlm \right\rangle \\
& {{{\hat{L}}}_{3}}\left| nlm \right\rangle =\hbar m\left| nlm \right\rangle \\
Zeile 190: Zeile 179:


Das bedeutet:
Das bedeutet:
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter Anomaler Zeemann- Effekt !)
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter {{FB|Anomaler Zeemann-Effekt}}!)


: <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>
{{Gln| <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>}}


Dies gilt für PARAMAGNETISCHE Atome mit magnetischem Moment
Dies gilt für '''paramagnetische''' Atome mit magnetischem Moment <math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>.
<math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>


Dabei entspricht
Dabei entspricht <math>2</math> vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist! (Siehe oben).
<math>2</math>
vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben).
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ):
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren (für den anomalen Zeemann- Effekt):
Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben!
Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben!
Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!
Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!
Zeile 207: Zeile 193:
{|
{|
|+Tabelle: Landé- Faktoren
|+Tabelle: Landé- Faktoren
!Teilchen !! s !! g !! Q
!Teilchen!! s!! g!! Q
|-
|-
|'''Elektron''' ||'''1/2''' ||'''2'''|| '''-e'''
|'''Elektron''' ||'''1/2''' ||'''2'''|| '''-e'''

Aktuelle Version vom 7. April 2012, 17:00 Uhr




Sei nun ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:

Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als direktes Produkt der beiden Hilberträume zeigt.

Allgemein gilt für separable oder Produktzustände

(äquivalente Sprechweise):

Ein beliebiger Zustand kann nach Spin- Basis Zuständen

zerlegt werden:

mit

In der Ortsraum- Basis mit dem Bahn- Zustand

In der Matrix- Darstellung des Spinraumes ergibt dies:

Mit

entsprechend 2 Spinkomponenten, also entsprechend

Die Vollständigkeit der Zustände

folgt aus:

Weiter:

Also die Komponenten von am Ort , einmal die Komponente mit Spin und einmal die Komponente mit Spin . Dabei gilt:

entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei mit Spin bzw. Spin zu finden.

Schrödingergleichung im Spin- Bahn- Raum

Hamilton- Operator für Bahn:

Elektron mit Ladung e{{H}_{B}}</math>

Hamilton- Operator für Spin:

wirkt dabei nur im Hilbertraum

Ohne Berücksichtigung von

Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in

Es gilt (äquivalente Darstellung):

Dabei

= Einsoperator im Spinraum → Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum:

MIT Berücksichtigung von

In Matrix- Darstellung:

Pauli Gleichung

Anwendung: - einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial (Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld

Dabei wird durch der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.

Wie man sieht bekommt man durch den Korrekturterm eine Korrektur an die Energie. Für B=0 → Eigenzustände mit Spin

Insgesamt fach entartet. Beim H- Atom: zusätzliche l- Entartung

Das bedeutet: teilweise Aufhebung der - fachen Entartung (sogenannter Anomaler Zeemann-Effekt!)



Dies gilt für paramagnetische Atome mit magnetischem Moment .

Dabei entspricht vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist! (Siehe oben). Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren (für den anomalen Zeemann- Effekt): Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben! Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!

Tabelle: Landé- Faktoren
Teilchen s g Q
Elektron 1/2 2 -e
Proton 1/2 5,59 e
Neutron 1/2 -3,83 0
Neutrino 1/2 0 0
Photon 1 0 0