Die Hamiltonschen Gleichungen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|
(4 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |
(kein Unterschied)
|
Aktuelle Version vom 9. August 2011, 13:16 Uhr
Der Artikel Die Hamiltonschen Gleichungen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 2) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
Ziel: Auch hier natürlich sollen Bewegungsgleichungen für die
gefunden werden.
Die Ableitung einer Bewegungsgleichung für
aus der Lagrangegleichung 2. Art ist bereits bekannt:
Eine Variable:
Differenziale:
Dies gilt fuer beliebige Differenziale in q, p und t. Somit kann die Gleichung nur erfüllt werden für
Mit Hilfe der Lagrange Bewegungsgleichung
Die Hamiltonschen Gleichungen sind also beide gefunden.
Es handelt sich um 2 DGLn 1. Ordnung für q und p statt 1 DGL 2. Ordnung für q(t)
Mehrere Variablen
Somit folgen hier die Hamiltonschen Gleichungen (Kanonische Gleichungen)
Der 2f- dimensionale Raum
heißt Phasenraum.
Er findet besonders in der klassischen statistischen Mechanik Anwendung. Dabei b4trachtet man Wahrscheinlichkeitsverteilungen auf dem Phasenraum.
Physikalische Bedeutung der Ham- Funktion
- wegen L= T-V bei holonomen Zwangsbed. und konservativen Kräften
- und wegen p(d/dt q)= 2T folgt: H = T+V
Dies gilt bei zeitlicher Translationsinvarianz (skleronome Zwangsbed.):
mit
Dann nämlich ist
(nach dem Eulerschen Satz: T ist quadratische, homogene Funktion der
Somit:
beschreibt die Gesamtenergie des Systems: Nur bei skleronomen Zwangsbedingungen und konservativen Kräften!
Nach dem Noether- Theorem, speziell unter dem Kapitel ZEITLICHE TRanslationsinvarianz
folgt dann Gesamtenergieerhaltung.
Dies läßt sich leicht nachweisen:
Dies gilt also nur für skleronome Zwangsbedingungen. Bei rheonomen Zwangsbed. ist im Allgemeinen H nicht T+V!!
Beispiel: Perle an starrem rotierendem Draht:
Eine Perle der Masse m sei auf einem starren Draht, der in der -y- Ebene rotiert (Reibung durch Erdpotenzial zu vernachlässigen): Generalisierte Koordinaten q ist der Abstand der Perle vom Mittelpunkt:
Man kann sich H=T+V denken. Dabei gilt das effektive Potenzial mit
Aus
folgt dann ohnehin wieder ein Erhaltungssatz: H=const.
Typisches Anwendungsschema des Hamilton- Formalismus:
- Zunächst sind die generalisierten Koordinaten zu wählen:
- Transformation des Radiusvektors
- Aufstellung der Lagrangegleichung:
- Bestimmung der generalisierten Impulse:
- Anschließend Legendre Trafo:
- Aufstellung und Integration der kanonischen Gleichungen:
Beispiele:
Teilchen in Zylinderkoordinaten ganz ohne Zwnagsbedingungen
- q1=3, q2=Phi, q3 = z
- Generalisierte Impulse:
Radialimpuls, z-Komponente des Drehimpulses und z-Komponente des Impulses
- Aufstellung der Legendretrafo:
- Kanonische Gleichungen:
Interessant ist das Ergebnis der Zentrifugalkraft (Scheinkraft):
F(Zentrifugal)=
die den radialen Impuls ändert.
Bekannt aus dem Keplerproblem ist uns bereits der Fall V®, ein Zentralpotenzial bei ebener Bewegung:
Somit sind Drehimpuls in der Ebene und z-Impuls des Systems erhalten.
sind zyklische Variablen
oBdA: ebene Bewegung, Drehimpulserhaltung in der Ebene
Beispiel: eindimensionaler harmonischer Oszi:
Das System ist skleronom wegen
also folgt Energieerhaltung: E=H=T+V
Also ist die Lösung der Phasenraumkurve eine Ellipse. Die Ellipsengröße variiert je nach Energie:
Die Halbachsen sind:
(bestimmt durch 1. Integral).
Als kanonische Gleichungen ergibt sich:
Daraus folgt dann gerade die Bewegungsgleichung
Diese definiert ein Richtungsfeld im Phasenraum
Geladenes Teilchen im elektromagnetischen Feld:
Aus dem Kapitel Eichtransformation der Lagrangefunktion ist das nötige Handwerkszeugs bereits bekannt:
die kanonischen konjugierten Impulse lauten:
Dabei begegnen uns die feinen Unterschiede im Impuls, nämlich
als kinetischer Impuls (der auch tatsächlich mit der Geschwindigkeit verknüpft ist).
ist kanonischer Impuls