Inhomogene Maxwellgleichungen im Vakuum: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|6|3}}</noinclude> ( Erregungsgleichungen) <math>\begin{align} & {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho \\ & \L…“
 
*>SchuBot
K Interpunktion, replaced: ! → ! (2), ( → ( (2)
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 1: Zeile 1:
<noinclude>{{Scripthinweis|Elektrodynamik|6|3}}</noinclude>
<noinclude>{{Scripthinweis|Elektrodynamik|6|3}}</noinclude>
  ( Erregungsgleichungen)
  (Erregungsgleichungen)


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& \Leftrightarrow {{\partial }_{1}}{{E}^{1}}+{{\partial }_{2}}{{E}^{2}}+{{\partial }_{3}}{{E}^{3}}=\frac{1}{{{\varepsilon }_{0}}c}c\rho  \\
& \Leftrightarrow {{\partial }_{1}}{{E}^{1}}+{{\partial }_{2}}{{E}^{2}}+{{\partial }_{3}}{{E}^{3}}=\frac{1}{{{\varepsilon }_{0}}c}c\rho  \\
Zeile 17: Zeile 17:
# Komponente
# Komponente


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
& {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
Zeile 26: Zeile 26:
\end{align}</math>
\end{align}</math>


Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:
Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms (Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{\nu }}{{F}^{\mu \nu }}=-\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\mu \nu }}=-\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\nu \mu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\nu \mu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
\end{align}</math>
\end{align}</math>


Die Viererdivergenz des elektrischen Feldstärketensors !
Die Viererdivergenz des elektrischen Feldstärketensors!


'''Bemerkungen'''
'''Bemerkungen'''
Zeile 39: Zeile 39:
# die homogenen Maxwellgleichungen sind durch den Potenzialansatz
# die homogenen Maxwellgleichungen sind durch den Potenzialansatz


<math>\left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
:<math>\left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
Zeile 48: Zeile 48:
automatisch erfüllt:
automatisch erfüllt:


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }} \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }} \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}=0, \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}=0, \\
Zeile 58: Zeile 58:
Aus den inhomogenen Maxwell- Gleichungen
Aus den inhomogenen Maxwell- Gleichungen


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}-{{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}-{{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>


folgt mit Lorentz- Eichung
folgt mit Lorentz- Eichung


<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>
:<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}={{\partial }^{\nu }}{{\partial }_{\beta }}{{\Phi }^{\beta }}=0 \\
& {{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}={{\partial }^{\nu }}{{\partial }_{\beta }}{{\Phi }^{\beta }}=0 \\
& also: \\
& also: \\
\end{align}</math>
\end{align}</math>


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
als inhomogene Wellengleichung
als inhomogene Wellengleichung


'''Die Maxwellgleichungen'''
'''Die Maxwellgleichungen'''


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
& {{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }} \\
& {{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }} \\
Zeile 80: Zeile 80:


sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind.
sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind.
Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!
Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null!!


<u>'''Gauß- System:'''</u>
<u>'''Gauß- System:'''</u>


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}=\frac{4\pi }{c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}=\frac{4\pi }{c}{{j}^{\nu }}</math>

Aktuelle Version vom 13. September 2010, 00:20 Uhr



(Erregungsgleichungen)
  1. Komponente

Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms (Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:

Die Viererdivergenz des elektrischen Feldstärketensors!

Bemerkungen

  1. die homogenen Maxwellgleichungen sind durch den Potenzialansatz

automatisch erfüllt:

Aus den inhomogenen Maxwell- Gleichungen

folgt mit Lorentz- Eichung

als inhomogene Wellengleichung

Die Maxwellgleichungen

sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind. Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null!!

Gauß- System: