Inhomogene Maxwellgleichungen im Vakuum: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|6|3}}</noinclude> ( Erregungsgleichungen) <math>\begin{align} & {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho \\ & \L…“
 
*>SchuBot
Einrückungen Mathematik
Zeile 2: Zeile 2:
  ( Erregungsgleichungen)
  ( Erregungsgleichungen)


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& \Leftrightarrow {{\partial }_{1}}{{E}^{1}}+{{\partial }_{2}}{{E}^{2}}+{{\partial }_{3}}{{E}^{3}}=\frac{1}{{{\varepsilon }_{0}}c}c\rho  \\
& \Leftrightarrow {{\partial }_{1}}{{E}^{1}}+{{\partial }_{2}}{{E}^{2}}+{{\partial }_{3}}{{E}^{3}}=\frac{1}{{{\varepsilon }_{0}}c}c\rho  \\
Zeile 17: Zeile 17:
# Komponente
# Komponente


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
& {{\partial }_{2}}{{B}^{3}}-{{\partial }_{3}}{{B}^{2}}={{\mu }_{0}}{{j}^{1}}+{{\varepsilon }_{0}}{{\mu }_{0}}\frac{\partial }{\partial t}{{E}^{1}} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
Zeile 28: Zeile 28:
Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:
Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{\nu }}{{F}^{\mu \nu }}=-\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\mu \nu }}=-\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\nu \mu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
& {{\partial }_{\nu }}{{F}^{\nu \mu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\mu }} \\
Zeile 39: Zeile 39:
# die homogenen Maxwellgleichungen sind durch den Potenzialansatz
# die homogenen Maxwellgleichungen sind durch den Potenzialansatz


<math>\left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
:<math>\left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
Zeile 48: Zeile 48:
automatisch erfüllt:
automatisch erfüllt:


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }} \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }} \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}=0, \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}=0, \\
Zeile 58: Zeile 58:
Aus den inhomogenen Maxwell- Gleichungen
Aus den inhomogenen Maxwell- Gleichungen


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}-{{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}-{{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>


folgt mit Lorentz- Eichung
folgt mit Lorentz- Eichung


<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>
:<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>


<math>\begin{align}
:<math>\begin{align}
& {{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}={{\partial }^{\nu }}{{\partial }_{\beta }}{{\Phi }^{\beta }}=0 \\
& {{\partial }_{\beta }}{{\partial }^{\nu }}{{\Phi }^{\beta }}={{\partial }^{\nu }}{{\partial }_{\beta }}{{\Phi }^{\beta }}=0 \\
& also: \\
& also: \\
\end{align}</math>
\end{align}</math>


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }}</math>
als inhomogene Wellengleichung
als inhomogene Wellengleichung


'''Die Maxwellgleichungen'''
'''Die Maxwellgleichungen'''


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
& {{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{F}_{\mu \nu }}={{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\varepsilon }^{\alpha \beta \mu \nu }}{{\partial }_{\beta }}{{\partial }_{\nu }}{{\Phi }_{\mu }}=0 \\
& {{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }} \\
& {{\partial }_{\beta }}{{F}^{\beta \nu }}={{\partial }_{\beta }}{{\partial }^{\beta }}{{\Phi }^{\nu }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\nu }} \\
Zeile 84: Zeile 84:
<u>'''Gauß- System:'''</u>
<u>'''Gauß- System:'''</u>


<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}=\frac{4\pi }{c}{{j}^{\nu }}</math>
:<math>{{\partial }_{\beta }}{{F}^{\beta \nu }}=\frac{4\pi }{c}{{j}^{\nu }}</math>

Version vom 12. September 2010, 17:55 Uhr



( Erregungsgleichungen)
  1. Komponente

Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:

Die Viererdivergenz des elektrischen Feldstärketensors !

Bemerkungen

  1. die homogenen Maxwellgleichungen sind durch den Potenzialansatz

automatisch erfüllt:

Aus den inhomogenen Maxwell- Gleichungen

folgt mit Lorentz- Eichung

als inhomogene Wellengleichung

Die Maxwellgleichungen

sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind. Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!

Gauß- System: