Magnetische Multipole: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Pfeile einfügen, replaced: -> → →
*>SchuBot
K Interpunktion, replaced: ! → ! (7), ( → ( (4)
Zeile 1: Zeile 1:
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude>
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude>


  ( stationär)
  (stationär)


Ausgangspunkt ist
Ausgangspunkt ist
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
(mit der Coulomb- Eichung
(mit der Coulomb- Eichung
:<math>\nabla \cdot \bar{A}(\bar{r})=0</math>
:<math>\nabla \cdot \bar{A}(\bar{r})=0</math>)
)
 


mit den Randbedingungen
mit den Randbedingungen
Zeile 66: Zeile 66:


:<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=0</math>
:<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=0</math>
weil der Strom verschwindet !
weil der Strom verschwindet!
Somit gibt der Term
Somit gibt der Term


Zeile 79: Zeile 79:
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math>


Als DIPOLPOTENZIAL !!
Als DIPOLPOTENZIAL!!


:<math>\begin{align}
:<math>\begin{align}
Zeile 86: Zeile 86:
\end{align}</math>
\end{align}</math>


das magnetische Dipolmoment !
das magnetische Dipolmoment!


Analog zu
Analog zu
Zeile 139: Zeile 139:


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment
:<math>\bar{p}=q\bar{a}</math>
:<math>\bar{p}=q\bar{a}</math>,
, welches von der positiven zur negativen Ladung zeigt.
welches von der positiven zur negativen Ladung zeigt.


<u>'''Bewegte Ladungen'''</u>
<u>'''Bewegte Ladungen'''</u>
Zeile 169: Zeile 169:


:<math>\bar{m}=\frac{q}{2m}\bar{L}</math>
:<math>\bar{m}=\frac{q}{2m}\bar{L}</math>
gilt aber auch für starre Körper !
gilt aber auch für starre Körper!
* Allgemeines Gesetz !
* Allgemeines Gesetz!


Jedoch gilt dies nicht für den Spin eines Elektrons !!!
Jedoch gilt dies nicht für den Spin eines Elektrons!!!


:<math>\begin{align}
:<math>\begin{align}
Zeile 179: Zeile 179:
\end{align}</math>
\end{align}</math>


Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen !
Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!


'''Kraft auf eine Stromverteilung:'''
'''Kraft auf eine Stromverteilung:'''
Zeile 203: Zeile 203:


:<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math>
:<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math>
( keine Monopole)
(keine Monopole)
Also:
Also:


Zeile 217: Zeile 217:
:<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math>
:<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math>


( Das externe Feld soll keine Stromwirbel im Bereich von
(Das externe Feld soll keine Stromwirbel im Bereich von
:<math>\bar{j}(\bar{r}\acute{\ })</math>
:<math>\bar{j}(\bar{r}\acute{\ })</math>
haben:
haben:
Zeile 229: Zeile 229:
\end{align}</math>
\end{align}</math>


( Vergl. S. 34)
(Vergl. S. 34)

Version vom 13. September 2010, 00:21 Uhr




(stationär)

Ausgangspunkt ist

(mit der Coulomb- Eichung

)


mit den Randbedingungen

für r→ unendlich

Taylorentwicklung nach

von analog zum elektrischen Fall: Die Stromverteilung

sei stationär für

Monopol- Term

Mit

Im stationären Fall folgt aus der Kontinuitätsgleichung:

Mit

folgt dann:

Somit verschwindet der Monopolterm in der Theorie

Dipol- Term

mit

und mit

Folgt:

Da

weil der Strom verschwindet! Somit gibt der Term

keinen Beitrag zum

Also:

Als DIPOLPOTENZIAL!!

das magnetische Dipolmoment!

Analog zu

dem elektrischen Dipolmoment

Die magnetische Induktion des Dipolmomentes ergibt sich als:

Wegen:

mit

Analog ergab sich als elektrisches Dipolfeld:

Beispiel: Ebene Leiterschleife L:


Mit I = Strom durch den Leiter

Dabei ist

die Normale auf der von L eingeschlossenen Fläche F

Also: Ein Ringstrom bedingt ein magnetisches Dipolmoment


analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment

,
welches von der positiven zur negativen Ladung zeigt.

Bewegte Ladungen N Teilchen mit den Massen mi und den Ladungen qi bewegen sich.

Dabei sei die spezifische Ladung

konstant:

Das magnetische Dipolmoment beträgt:

Mit dem Bahndrehimpuls

gilt aber auch für starre Körper!

  • Allgemeines Gesetz!

Jedoch gilt dies nicht für den Spin eines Elektrons!!!

Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen!

Kraft auf eine Stromverteilung:

im Feld einer externen magnetischen Induktion

Spürt die Lorentzkraft

Talyorentwicklung liefert:

im stationären Fall gilt wieder:

(keine Monopole) Also:

Man fordert:

(Das externe Feld soll keine Stromwirbel im Bereich von

haben:

(Vergl. S. 34)