Magnetostatische Feldgleichungen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|2|3}}</noinclude> Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die r…“
 
*>SchuBot
Einrückungen Mathematik
Zeile 5: Zeile 5:
Mit dem Vektorpotenzial
Mit dem Vektorpotenzial


<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
:<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>


Welches nicht eindeutig ist, sondern beliebig gemäß
Welches nicht eindeutig ist, sondern beliebig gemäß
<math>\bar{A}(\bar{r})\to \bar{A}+\nabla \Psi </math>
:<math>\bar{A}(\bar{r})\to \bar{A}+\nabla \Psi </math>
umgeeicht werden kann.
umgeeicht werden kann.
(
(
<math>\Psi (\bar{r})</math>
:<math>\Psi (\bar{r})</math>
beliebig möglich, da
beliebig möglich, da
<math>\nabla \times \nabla \Psi =0</math>
:<math>\nabla \times \nabla \Psi =0</math>
)
)


Mit diesem Vektorpotenzial also kann man schreiben:
Mit diesem Vektorpotenzial also kann man schreiben:


<math>\bar{B}=rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>
:<math>\bar{B}=rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math>


Beweis:
Beweis:


<math>\begin{align}
:<math>\begin{align}
& rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}\times \bar{j}(\bar{r}\acute{\ }) \\
& rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}\times \bar{j}(\bar{r}\acute{\ }) \\
& {{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-\frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}} \\
& {{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-\frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}} \\
Zeile 31: Zeile 31:
Es existiert ein Vektorpotenzial mit
Es existiert ein Vektorpotenzial mit


<math>\begin{align}
:<math>\begin{align}
& \bar{B}=rot\bar{A}(\bar{r}) \\
& \bar{B}=rot\bar{A}(\bar{r}) \\
& \Leftrightarrow  \\
& \Leftrightarrow  \\
\end{align}</math>
\end{align}</math>


<math>div\bar{B}=0</math>
:<math>div\bar{B}=0</math>


Beweis:
Beweis:


<math>div(rot\bar{A}(\bar{r}))=0</math>
:<math>div(rot\bar{A}(\bar{r}))=0</math>


es gibt keine Quellen der magnetischen Induktion ( es existieren keine "magnetischen Ladungen".
es gibt keine Quellen der magnetischen Induktion ( es existieren keine "magnetischen Ladungen".
Zeile 47: Zeile 47:
Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen !
Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen !
Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten
Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten
<math>{{10}^{-35}}s</math>
:<math>{{10}^{-35}}s</math>
erzeugt worden sein sollen.
erzeugt worden sein sollen.


Zeile 53: Zeile 53:
'''Der Zusammenhang zwischen'''
'''Der Zusammenhang zwischen'''


<math>\bar{B}(\bar{r})</math>
:<math>\bar{B}(\bar{r})</math> und <math>\bar{j}(\bar{r})</math>
und
<math>\bar{j}(\bar{r})</math>
:
:


<math>\begin{align}
:<math>\begin{align}
& \nabla \times \bar{B}(\bar{r})=\nabla \times \left( \nabla \times \bar{A}(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r}) \\
& \nabla \times \bar{B}(\bar{r})=\nabla \times \left( \nabla \times \bar{A}(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r}) \\
& \nabla \cdot \bar{A}(\bar{r})=\nabla \cdot \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \nabla \cdot \bar{A}(\bar{r})=\nabla \cdot \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
Zeile 71: Zeile 69:
Im Allgemeinen Fall gilt dagegen:
Im Allgemeinen Fall gilt dagegen:


<math>\begin{align}
:<math>\begin{align}
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
& \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\
& \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\
Zeile 80: Zeile 78:
Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:
Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:


<math>\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=0</math>
:<math>\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=0</math>


Also:
Also:


<math>\nabla \cdot \bar{A}(\bar{r})=-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t)</math>
:<math>\nabla \cdot \bar{A}(\bar{r})=-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t)</math>


Also:
Also:


<math>\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)={{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>
:<math>\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)={{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>


Auf der anderen Seite ergibt sich ganz einfach
Auf der anderen Seite ergibt sich ganz einfach


<math>\begin{align}
:<math>\begin{align}
& \Delta \bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\
& \Delta \bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\
& =\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
& =\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
\end{align}</math>
\end{align}</math> wegen <math>{{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=4\pi \delta \left( \bar{r}-\bar{r}\acute{\ } \right)</math>
 
wegen
 
<math>{{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=4\pi \delta \left( \bar{r}-\bar{r}\acute{\ } \right)</math>


Also:
Also:


<math>\nabla \times \bar{B}(\bar{r})=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r})+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>
:<math>\nabla \times \bar{B}(\bar{r})=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r})+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math>


Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:
Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:


<math>\begin{align}
:<math>\begin{align}
& \nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r}) \\
& \nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r}) \\
& {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)=0 \\
& {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)=0 \\
Zeile 116: Zeile 110:


Integration über eine Fläche F mit Rand
Integration über eine Fläche F mit Rand
<math>\partial F</math>
:<math>\partial F</math>
liefert die Intgralform:
liefert die Intgralform:


<math>\begin{align}
:<math>\begin{align}
& \int_{{}}^{{}}{d\bar{f}\cdot }\nabla \times \bar{B}(\bar{r})=\oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})=\int_{{}}^{{}}{d\bar{f}\cdot }{{\mu }_{0}}\bar{j}(\bar{r})={{\mu }_{0}}I \\
& \int_{{}}^{{}}{d\bar{f}\cdot }\nabla \times \bar{B}(\bar{r})=\oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})=\int_{{}}^{{}}{d\bar{f}\cdot }{{\mu }_{0}}\bar{j}(\bar{r})={{\mu }_{0}}I \\
& \oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})={{\mu }_{0}}I \\
& \oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})={{\mu }_{0}}I \\
Zeile 131: Zeile 125:
<u>'''Magnetostatik:'''</u>
<u>'''Magnetostatik:'''</u>


<math>div\bar{B}=0\Leftrightarrow \bar{B}=rot\bar{A}</math>
:<math>div\bar{B}=0\Leftrightarrow \bar{B}=rot\bar{A}</math>
( quellenfreiheit)
( quellenfreiheit)


<math>\begin{align}
:<math>\begin{align}
& rot\bar{B}={{\mu }_{0}}\bar{j}(\bar{r})\Leftrightarrow \oint\limits_{\partial F}{{}}d\bar{s}\cdot \bar{B}={{\mu }_{0}}I \\
& rot\bar{B}={{\mu }_{0}}\bar{j}(\bar{r})\Leftrightarrow \oint\limits_{\partial F}{{}}d\bar{s}\cdot \bar{B}={{\mu }_{0}}I \\
& \Rightarrow \Delta \bar{A}=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
& \Rightarrow \Delta \bar{A}=-{{\mu }_{0}}\bar{j}(\bar{r}) \\
Zeile 141: Zeile 135:
Gilt jedoch nur im Falle der Coulomb- Eichung:
Gilt jedoch nur im Falle der Coulomb- Eichung:


<math>\nabla \cdot \bar{A}=0</math>
:<math>\nabla \cdot \bar{A}=0</math>


Dies geschieht durch die Umeichung
Dies geschieht durch die Umeichung


<math>\begin{align}
:<math>\begin{align}
& \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi  \\
& \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi  \\
& \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi  \\
& \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi  \\
Zeile 155: Zeile 149:
<u>'''Elektrostatik:'''</u>
<u>'''Elektrostatik:'''</u>


<math>rot\bar{E}=0\Leftrightarrow \bar{E}=-\nabla \Phi </math>
:<math>rot\bar{E}=0\Leftrightarrow \bar{E}=-\nabla \Phi </math>
( Wirbelfreiheit)
( Wirbelfreiheit)


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho  \\
& \Leftrightarrow {{\varepsilon }_{0}}\oint\limits_{\partial V}{d\bar{f}\cdot }\bar{E}=Q \\
& \Leftrightarrow {{\varepsilon }_{0}}\oint\limits_{\partial V}{d\bar{f}\cdot }\bar{E}=Q \\
Zeile 164: Zeile 158:
differenzielle Form / integrale Form
differenzielle Form / integrale Form


<math>\Rightarrow \Delta \Phi =-\frac{1}{{{\varepsilon }_{0}}}\rho \left( {\bar{r}} \right)</math>
:<math>\Rightarrow \Delta \Phi =-\frac{1}{{{\varepsilon }_{0}}}\rho \left( {\bar{r}} \right)</math>
( Poissongleichung)
( Poissongleichung)

Version vom 12. September 2010, 17:55 Uhr




Sie gelten auch in quasistaischer Näherung: Die zeitliche Änderung muss viel kleiner sein als die räumliche !!

Mit dem Vektorpotenzial

Welches nicht eindeutig ist, sondern beliebig gemäß

umgeeicht werden kann. (

beliebig möglich, da

)

Mit diesem Vektorpotenzial also kann man schreiben:

Beweis:

Folgende Aussagen sind äquivalent: Es existiert ein Vektorpotenzial mit

Beweis:

es gibt keine Quellen der magnetischen Induktion ( es existieren keine "magnetischen Ladungen".

Aber: Magnetische Monopole wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. ( aus der quantenmechanischen Quantisierung des Drehimpulses !) Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen ! Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten

erzeugt worden sein sollen.

Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 ( Spektrum der Wissenschaft, Juni 1982, S. 78 ff.) Der Zusammenhang zwischen

und

Wobei die verwendete Kontinuitätsgleichung natürlich nur für statische Ladungsverteilungen gilt !

Im Allgemeinen Fall gilt dagegen:

Mit dem Gaußschen Satz. Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt:

Also:

Also:

Auf der anderen Seite ergibt sich ganz einfach

wegen

Also:

Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt:

Dies ist die differenzielle Form des Ampereschen Gesetzes Die Ströme sind die Wirbel der magnetischen Induktion !!

Integration über eine Fläche F mit Rand

liefert die Intgralform:

Mit dem Satz von Stokes Das sogenannte Durchflutungsgesetz !

Zusammenfassung:

Magnetostatik:

( quellenfreiheit)

Gilt jedoch nur im Falle der Coulomb- Eichung:

Dies geschieht durch die Umeichung

Elektrostatik:

( Wirbelfreiheit)

differenzielle Form / integrale Form

( Poissongleichung)