Relativistische Formulierung der Elektrodynamik

Aus PhysikWiki
Zur Navigation springen Zur Suche springen




Ko- und Kontravariante Schreibweise der Relativitätstheorie

Grundpostulat der speziellen Relativitätstheorie:

Kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ! ( Einstein, 1904). Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !

  • Kugelwellen sind
  • -> Lorentz- Invariant, also:

Für Lorentz- Transformationen !

Formalisierung: Der Raumzeitliche Abstand als

Zwischen 2 Ereignissen bleibt der raumzeitliche Abstand invariant bei Lorentz- Transformationen ! zwischen den Inertialsystemen :

Ziel: Um dies sofort zu sehen führt man Vierervektoren ein. Dann schreibt man als Skalarprodukt von Vierervektoren im Minkowski- Raum V und man benutze den Formalismus der linearen orthogonalen Transformation , unter denen das Skalarprodukt invariant bleibt:

In der ko / kontravarianten Schreibweise tritt jeder Vierervektor in 2 möglichen Versionen auf:

kontravariante Komponenten:

als Komponenten des Ortsvektors

kovariante Komponenten

kovarianter Vektor , dualer Vektorraum zu V ! Merke: Die Räume der kovarianten Vektoren ist dual zur menge der kontravarianten -> als Raum der linearen Funktionale l:

Damit werden dann die Skalarprodukte gebildet !

Schreibe

Mit: Summenkonvention ! über je einen ko- und einen kontravarianten Index ( hier i =0,1,2,3) wird summiert !

Physikalische Anwendung

Lorentz- Invarianten lassen sich als Skalarprodukt schreiben !

Beispiel: dÁlemebert- Operator:

Vierergeschwindigkeit

Physikalische Interpretation

Viererimpuls

mit der Ruhemasse m0

Also:

Mit der Energie

Analoge Definition von Tensoren 2. Stufe:

Der metrische Tensor

Mittels der Metrik werden Indices gehoben bzw. gesenkt:

Wichtig fürs Skalarprodukt:

Lorentz- Trafo

zwischen Bezugssystemen: Lineare / homogene Trafo

die Lorentz- Transformation für

Nämlich:

Mit

für

Wesentliche Eigenschaft ( die Viererschreibweise ist so konstruiert worden):

U ist orthogonale Trafo:

Das Skalarprodukt ist invariant, falls U eine orthogonale Trafo ist Bzw. Forderung: Skalarprodukt invariant -> U muss orthogonale Trafo sein !

Umkehr- Transformation:


Die Abfrage enthält eine leere Bedingung.



Inhomogene Maxwellgleichungen im Vakuum

( Erregungsgleichungen)

  1. Komponente

Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:

Die Viererdivergenz des elektrischen Feldstärketensors !

Bemerkungen

  1. die homogenen Maxwellgleichungen sind durch den Potenzialansatz

automatisch erfüllt:

Aus den inhomogenen Maxwell- Gleichungen

folgt mit Lorentz- Eichung

als inhomogene Wellengleichung

Die Maxwellgleichungen

sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind. Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!

Gauß- System:

Relativistisches Hamiltonprinzip

Ziel: Formulierung der Elektrodynamik als Lagrange- Feldtheorie

Die rel. Dynamik eines Massepunktes kann aus dem Extremalprinzip abgeleitet werden, wenn man Die Punkt 1 und 2 als Anfangs- und Endereignis im 4- Raum sieht und wenn man die Ränder bei Variation festhält:

letzteres: Wirkungsintegral Wichtig:

Newtonsche Mechanik ist Grenzfall:

Wechselwirkung eines Massepunktes mit einem 4- Vektor- Feld

mit den Lorentz- Invarianten

und

Variation:

Nun:

Außerdem:

Somit:

Weiter mit partieller Integration:

Weiter:

Mit

Einsetzen in

liefert:

Wegen

Dies ist dann die aus dem hamiltonschen Prinzip abgeleitete Bewegungsgleichung eines Massepunktes der Ruhemasse m0 und der Ladung q unter dem Einfluss der Lorentz- Kraft.

Man setze:

Man bestimmt die Ortskomponenten über

überein, denn mit

folgt dann:

mit

Die zeitartige Komponente gibt wegen

Dies ist die Leistungsbilanz: Die Änderung der inneren Energie ist gleich der reingesteckten Arbeit

Eichinvarianz und Ladungserhaltung

Wirkungsintegral:

Dabei:

( Teilchen)

( Teilchen- Feld- Wechselwirkung)

Verallgemeinerung auf kontinuierliche Massendichte

Vorsicht: m ist hier Massendichte !!!

dOmega als Volumenelement im Minkowski- Raum !!!

Bemerkungen:

  1. ist eine Lorentz- Invariante , da das Volumen unter orthogonalen Transformationen

erhalten bleibt.

2) Aus

folgt, dass die Vierer- Massenstromdichte mit Massendichte m=

ein Vier- Vektor ist, da Lorentz- Skalare sind und natürlich selbst auch ein Vierervektor

  1. ist Lorentz - Invariant.

Also ist Lorentz- Invariant. Also auch .

Somit ist insgesamt Lorentz- Invariant !