Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 121: Zeile 121:


\end{align}</math>
\end{align}</math>
 
<math>\left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}</math>
: |(1.42)|RawN=.}}
: |(1.42)|RawN=.}}




Es gilt weiterhin <font color="#FFFF00">(AUFGABE)</FONT>, beachte
Es gilt weiterhin <font color="#FFFF00">(AUFGABE)</FONT>, beachte <math>\underline{p}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }</math> und <math>\underline{A}=\underline{A}\left( \underline{x},t \right)</math>
 
<math>\underline{p}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }</math>
 
und <math>\underline{A}=\underline{A}\left( \underline{x},t \right)</math>


{{NumBlk|:| <math>\left( \underline{p}-e\underline{A} \right)\times \left( \underline{p}-e\underline{A} \right)=-\frac{e\hbar }{\mathfrak{i} }\underbrace{\left( \underline{\nabla }\times \underline{A} \right)}_{\text{Magnetfeld}}=-\frac{e\hbar }{\mathfrak{i} }\underbrace{{\underline{B}}}_{\text{Magnetfeld}}</math> |(1.43)|RawN=.}}
{{NumBlk|:| <math>\left( \underline{p}-e\underline{A} \right)\times \left( \underline{p}-e\underline{A} \right)=-\frac{e\hbar }{\mathfrak{i} }\underbrace{\left( \underline{\nabla }\times \underline{A} \right)}_{\text{Magnetfeld}}=-\frac{e\hbar }{\mathfrak{i} }\underbrace{{\underline{B}}}_{\text{Magnetfeld}}</math> |(1.43)|RawN=.}}
Zeile 135: Zeile 131:
Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld
Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld


{{NumBlk|:|Pauli-Gleichung{{FB|Pauli-Gleichung}} <math>i{{\partial }_{t}}\varphi =\left[ \frac{1}{2m}{{\left( \underline{p}-e\underline{A} \right)}^{2}}-\underbrace{\frac{e\hbar }{2m}\underline{\sigma }.\underline{B}}_{\text{Pauli-Term}}+e\phi  \right]\varphi </math>
{{NumBlk|:|{{FB|Pauli-Gleichung}} <math>i{{\partial }_{t}}\varphi =\left[ \frac{1}{2m}{{\left( \underline{p}-e\underline{A} \right)}^{2}}-\underbrace{\frac{e\hbar }{2m}\underline{\sigma }.\underline{B}}_{\text{Pauli-Term}}+e\phi  \right]\varphi </math>


|(1.44)|RawN=.}}
|(1.44)|RawN=.}}

Version vom 5. September 2010, 23:57 Uhr



Mit (Vektor) Potential haben wir die Dirac-Gleichung als

     (1.37)


Jetzt erfolgt die Zerlegung , mit den 2er Spinoren


Damit folgt dann

     (1.38)


Beachte das jetzt überall gilt

Jetzt: Näherung/Annahme das kinetische und potentielle Energie viel kleiner als Ruhemasse ist

     (1.39)

einsetzen in die Gleichung (1.38) liefert


     (1.40)


Jetzt folgendes „Theorem“ benutzen

Fehler beim Parsen (Unbekannte Funktion „\begin{align}“): {\displaystyle \begin{align} & \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\ & \text{mit \underline{A}=}\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right)\text{,\underline{B}=}\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B}\text{ vektorwertiger Operator und} \\ & \underline{\sigma }\text{=}\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)\text{ Vektor der Pauli-Matrizen} \\ \end{align}}

     (1.41)


Beweis von (1.41) mittels (Anti) Kommutator-Eigenschaften (AUFGABE)

     (1.42)


Es gilt weiterhin (AUFGABE), beachte und

     (1.43)


Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld

Pauli-Gleichung


     (1.44)


mit dem 2-Komponentigen Spinor

Literatur

LITERATUR: GREINER