Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 101: Zeile 101:
& \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\
& \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\


& \text{mit \underline{A}=}\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right)\text{,\underline{B}=}\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B}\text{ vektorwertiger Operator und} \\
& \text{mit} \underline{A}=\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right)\text{,\underline{B}=}\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B}\text{ vektorwertiger Operator und} \\


& \underline{\sigma }\text{=}\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)\text{ Vektor der Pauli-Matrizen} \\
& \underline{\sigma }\text{=}\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)\text{ Vektor der Pauli-Matrizen} \\
Zeile 120: Zeile 120:
& \left[ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right]:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}-{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2\mathfrak{i} {{\varepsilon }_{ijk}}{{{\underline{\underline{\sigma }}}}_{k}} \\
& \left[ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right]:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}-{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2\mathfrak{i} {{\varepsilon }_{ijk}}{{{\underline{\underline{\sigma }}}}_{k}} \\


\end{align}</math>
\end{align}</math>|(1.42)|RawN=.}}
<math>\left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}</math>
: |(1.42)|RawN=.}}





Version vom 5. September 2010, 23:59 Uhr



Mit (Vektor) Potential haben wir die Dirac-Gleichung als

     (1.37)


Jetzt erfolgt die Zerlegung , mit den 2er Spinoren


Damit folgt dann

     (1.38)


Beachte das jetzt überall gilt

Jetzt: Näherung/Annahme das kinetische und potentielle Energie viel kleiner als Ruhemasse ist

     (1.39)

einsetzen in die Gleichung (1.38) liefert


     (1.40)


Jetzt folgendes „Theorem“ benutzen

Fehler beim Parsen (Unbekannte Funktion „\begin{align}“): {\displaystyle \begin{align} & \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\ & \text{mit} \underline{A}=\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right)\text{,\underline{B}=}\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B}\text{ vektorwertiger Operator und} \\ & \underline{\sigma }\text{=}\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right)\text{ Vektor der Pauli-Matrizen} \\ \end{align}}

     (1.41)


Beweis von (1.41) mittels (Anti) Kommutator-Eigenschaften (AUFGABE)

     (1.42)


Es gilt weiterhin (AUFGABE), beachte und

     (1.43)


Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld

Pauli-Gleichung


     (1.44)


mit dem 2-Komponentigen Spinor

Literatur

LITERATUR: GREINER