Relativistische Formulierung der Elektrodynamik: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 214: Zeile 214:
<math>{{x}^{i}}={{U}_{k}}^{i}x{{\acute{\ }}^{k}}</math>
<math>{{x}^{i}}={{U}_{k}}^{i}x{{\acute{\ }}^{k}}</math>


= Transformationsverhalten der Ströme und Felder=
<noinclude>{{Scripthinweis|Elektrodynamik|6|0}}</noinclude>
 
<u>'''Ziel: Ko- / Kontravariante Schreibweise der Elektrodynamik im Vakuum'''</u>
 
Grund: Die klassische Elektrodynamik ist bereits eine Lorentz- invariante Theorie !!
 
Historisch gab die  Maxwellsche Elektrodynamik und nicht die Mechanik den Anstoß zur Relativitätstheorie überhaupt !
 
'''Ladungserhaltung aus Kontinuitätsgleichung:'''
 
<math>\begin{align}
& div\bar{j}+\frac{\partial \rho }{\partial t}=\frac{\partial {{j}_{x}}}{\partial x}+\frac{\partial {{j}_{y}}}{\partial y}+\frac{\partial {{j}_{z}}}{\partial z}+\frac{\partial c\rho }{\partial ct}=0 \\
& 0=\frac{\partial \rho }{\partial t}+\sum\limits_{\alpha =1}^{3}{{}}{{\partial }_{\alpha }}{{j}^{\alpha }} \\
\end{align}</math>
 
Somit gewinnen wir aber ebenfalls wieder einen Lorentz- Skalar, nämlich
 
<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math>
 
in Viererschreibweise.
Die Vierer- Stromdichte ist
 
<math>\left\{ {{j}^{\mu }} \right\}=\left\{ c\rho ,\bar{j} \right\}</math>
ebenfalls ein kontravarianter Vierer- Vektor . Er heißt Vierer- Stromdichte.
Die Kontinuitätsgleichung ist gleich
<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math>
 
'''Forderung:'''
Ladungserhaltung soll in allen Inertialsystemen gelten !
->
 
<math>{{j}^{\mu }}=0</math>
muss sich wie ein Vierervektor transformieren, damit  das Skalarprodukt
<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math>
Lorentz- invariant ist !:
 
<math>\begin{align}
& {{x}^{0}}\acute{\ }=\gamma \left( {{x}^{0}}-\beta {{x}^{1}} \right)\Leftrightarrow t\acute{\ }=\gamma \left( t-\frac{v}{{{c}^{2}}}{{x}^{1}} \right) \\
& {{x}^{1}}\acute{\ }=\gamma \left( {{x}^{1}}-\beta {{x}^{0}} \right)\Leftrightarrow {{x}^{1}}\acute{\ }=\gamma \left( {{x}^{1}}-vt \right) \\
& {{x}^{2}}\acute{\ }={{x}^{2}} \\
& {{x}^{3}}\acute{\ }={{x}^{3}} \\
\end{align}</math>
 
Also gilt für Ladungs- und Stromdichten:
 
<math>\begin{align}
& {{j}^{0}}\acute{\ }=\gamma \left( {{j}^{0}}-\beta {{j}^{1}} \right)\Leftrightarrow \rho \acute{\ }=\gamma \left( \rho -\frac{v}{{{c}^{2}}}{{j}^{1}} \right) \\
& {{j}^{1}}\acute{\ }=\gamma \left( {{j}^{1}}-\beta {{j}^{0}} \right)\Leftrightarrow {{j}^{1}}\acute{\ }=\gamma \left( {{j}^{1}}-v\rho  \right) \\
& {{j}^{2}}\acute{\ }={{j}^{2}} \\
& {{j}^{3}}\acute{\ }={{j}^{3}} \\
\end{align}</math>
 
Merke: Es sollte kein Missverständnis geschehen: Ist ein Vektor in ein Lorentz- invariantes Skalarprodukt verwickelt, so ist es ein Vierervektor. Damit ist klar: Seine Komponenten transfornmieren nach der Lorentz- Trafo.
Dadurch aber ist die Trafo für seine Komponenten, die Beispielsweise Ladungs- und Stromdichten sind, gefunden.
 
<u>'''4- Potenziale:'''</u>
 
<u>Die </u>Potenziale
<math>\Phi ,\bar{A}</math>
sind in der Lorentz- Eichung
<math>\nabla \cdot \bar{A}+\frac{1}{{{c}^{2}}}\frac{\partial }{\partial t}\phi =0</math>
Lösungen von
 
<math>\begin{align}
& \Delta \bar{A}\left( \bar{r},t \right)-\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\bar{A}\left( \bar{r},t \right)=-{{\mu }_{0}}\bar{j} \\
& \#\bar{A}\left( \bar{r},t \right)=-{{\mu }_{0}}\bar{j} \\
& \#=-{{\partial }_{\mu }}{{\partial }^{\mu }} \\
& {{\mu }_{0}}c=\frac{1}{{{\varepsilon }_{0}}c} \\
& \#\bar{A}\left( \bar{r},t \right)=-{{\mu }_{0}}\bar{j}\Leftrightarrow {{\partial }_{\mu }}{{\partial }^{\mu }}c{{A}^{\alpha }}=\frac{1}{{{\varepsilon }_{0}}c}{{j}^{\alpha }} \\
& \alpha =1,2,3 \\
\end{align}</math>
 
<math>\begin{align}
& \Delta \phi \left( \bar{r},t \right)-\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\phi \left( \bar{r},t \right)=-\frac{\rho }{{{\varepsilon }_{0}}}=-{{\mu }_{0}}{{c}^{2}}\rho  \\
& \#\phi \left( \bar{r},t \right)=-\frac{\rho }{{{\varepsilon }_{0}}}\Leftrightarrow {{\partial }_{\mu }}{{\partial }^{\mu }}\phi =\frac{1}{{{\varepsilon }_{0}}c}{{j}^{0}} \\
\end{align}</math>
 
Zusammen:
 
<math>\begin{align}
& -\#{{\Phi }^{\mu }}={{\partial }_{\alpha }}{{\partial }^{\alpha }}{{\Phi }^{\mu }}={{\mu }_{0}}{{j}^{\mu }} \\
& {{\Phi }^{0}}:=\phi  \\
& {{\Phi }^{i}}:=c{{A}^{i}}\quad i=1..3 \\
\end{align}</math>
 
Da
<math>{{j}^{\mu }}</math>
Vierervektoren sind ( wie Vierervektoren transformieren), muss auch
<math>{{\Phi }^{\mu }}</math>
wie ein Vierervektor transformieren.
Denn: Der d´Alembert- Operator ist Lorentz- invariant:
 
<math>{{\partial }_{\alpha }}{{\partial }^{\alpha }}</math>
lorentz- invariant !:
 
<math>\begin{align}
& {{\Phi }^{0}}\acute{\ }=\gamma \left( {{\Phi }^{0}}-\beta {{\Phi }^{1}} \right)\quad bzw.\quad \Phi \acute{\ }=\gamma \left( \Phi -v{{A}^{1}} \right) \\
& {{\Phi }^{1}}\acute{\ }=\gamma \left( {{\Phi }^{1}}-\beta {{\Phi }^{0}} \right)\quad bzw.\quad A{{\acute{\ }}^{1}}=\gamma \left( {{A}^{1}}-\frac{v}{{{c}^{2}}}\Phi  \right),{{A}^{\acute{\ }2}}={{A}^{2}},A{{\acute{\ }}^{3}}={{A}^{3}} \\
\end{align}</math>
 
Nun: Lorentz- Eichung:
 
<math>\nabla \cdot \bar{A}+\frac{1}{{{c}^{2}}}\frac{\partial }{\partial t}\phi =0</math>
 
Lorentz- Eichung <->  Lorentz- Invarianz
<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0</math>
( Gegensatz zur Coulomb- Eichung)
 
<math>{{\partial }_{\mu }}{{\Phi }^{\mu }}=0\Leftrightarrow \nabla \cdot \bar{A}+\frac{1}{{{c}^{2}}}\frac{\partial }{\partial t}\phi =0</math>
 
<u>'''Umeichung:'''</u>
 
<math>\begin{align}
& \tilde{\bar{A}}=\bar{A}+\nabla F \\
& \tilde{\phi }=\phi -\frac{\partial }{\partial t}F \\
& \Leftrightarrow  \\
& c{{{\tilde{A}}}^{\alpha }}=c{{A}^{\alpha }}+{{\partial }_{\alpha }}cF=c{{A}^{\alpha }}-{{\partial }^{\alpha }}cF \\
& {{{\tilde{\Phi }}}^{0}}={{\Phi }^{0}}-{{\partial }_{0}}cF={{\Phi }^{0}}-{{\partial }^{0}}cF \\
\end{align}</math>
 
'''Also:'''
 
<math>{{\tilde{\Phi }}^{\mu }}={{\Phi }^{\mu }}-{{\partial }^{\mu }}cF</math>
 
'''Felder E und B:'''
 
<math>\begin{align}
& \bar{E}=-grad\phi -\frac{\partial }{\partial t}\bar{A} \\
& \Rightarrow {{E}^{\alpha }}=-{{\partial }_{\alpha }}\phi -\frac{1}{c}\frac{\partial }{\partial t}c{{A}^{\alpha }}=-{{\partial }_{\alpha }}{{\Phi }^{0}}-{{\partial }_{0}}{{\Phi }^{\alpha }}={{\partial }^{\alpha }}{{\Phi }^{0}}-{{\partial }^{0}}{{\Phi }^{\alpha }} \\
\end{align}</math>
 
<math>\begin{align}
& \bar{B}=\nabla \times \bar{A} \\
& \Rightarrow c{{B}^{1}}={{\partial }_{2}}c{{A}^{3}}-{{\partial }_{3}}c{{A}^{2}}={{\partial }_{2}}{{\Phi }^{3}}-{{\partial }_{3}}{{\Phi }^{2}}={{\partial }^{3}}{{\Phi }^{2}}-{{\partial }^{2}}{{\Phi }^{3}} \\
\end{align}</math>
 
Die anderen Komponenten gewinnt man durch zyklische Vertauschung:
 
<math>\begin{align}
& c{{B}^{2}}={{\partial }^{1}}{{\Phi }^{3}}-{{\partial }^{3}}{{\Phi }^{1}} \\
& c{{B}^{3}}={{\partial }^{2}}{{\Phi }^{1}}-{{\partial }^{1}}{{\Phi }^{2}} \\
\end{align}</math>
 
Diese Gleichungen werden zusammengefasst durch den antisymmetrtischen Feldstärketensor:
 
<math>\begin{align}
& \left\{ {{F}_{\mu \nu }} \right\}=\left\{ {{\partial }_{\mu }}{{\Phi }_{\nu }}-{{\partial }_{\nu }}{{\Phi }_{\mu }} \right\}=\left( \begin{matrix}
0 & \frac{1}{c}{{E}_{x}} & \frac{1}{c}{{E}_{y}} & \frac{1}{c}{{E}_{z}}  \\
-\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
-\frac{1}{c}{{E}_{y}} & {{B}_{z}} & 0 & -{{B}_{x}}  \\
-\frac{1}{c}{{E}_{z}} & -{{B}_{y}} & {{B}_{x}} & 0  \\
\end{matrix} \right) \\
& {{F}^{\mu \nu }}=\left\{ {{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }} \right\}=\left( \begin{matrix}
0 & -\frac{1}{c}{{E}_{x}} & -\frac{1}{c}{{E}_{y}} & -\frac{1}{c}{{E}_{z}}  \\
\frac{1}{c}{{E}_{x}} & 0 & -{{B}_{z}} & {{B}_{y}}  \\
\frac{1}{c}{{E}_{y}} & {{B}_{z}} & 0 & -{{B}_{x}}  \\
\frac{1}{c}{{E}_{z}} & -{{B}_{y}} & {{B}_{x}} & 0  \\
\end{matrix} \right) \\
& \Leftrightarrow {{F}^{\mu \nu }}=\left\{ {{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }} \right\}=\left( \begin{matrix}
0 & -{{E}^{1}} & -{{E}^{2}} & -{{E}^{3}}  \\
{{E}^{1}} & 0 & -c{{B}^{3}} & c{{B}^{2}}  \\
{{E}^{2}} & c{{B}^{3}} & 0 & -c{{B}^{1}}  \\
{{E}^{3}} & -c{{B}^{2}} & c{{B}^{1}} & 0  \\
\end{matrix} \right) \\
\end{align}</math>
 
Wegen der Antisymmetrie hat
<math>{{F}^{\mu \nu }}</math>
nur 6 unabhängige Komponenten !
 
Das bedeutet, die Raum- Raum- Komponenten entsprechen
 
<math>rot\bar{A}=\bar{B}</math>
 
während die Raum- zeit- Komponenten:
 
<math>\bar{E}=-grad\phi -\frac{\partial }{\partial t}\bar{A}</math>
erfüllen.
 
<u>'''Lorentz- Trafo der Felder:'''</u>
 
Der Feldstärketensor ist kovariant und transformiert demnach über die inverse Lorentz- Transformation.
Das heißt: Für die Transformation in ein in x- Richtung mit konstanter Geschwindigkeit
<math>\bar{v}</math>
bewegtes System K´ gilt:
 
<math>{{F}_{{}}}{{\acute{\ }}^{\mu \nu }}={{U}^{\mu }}_{\lambda }{{U}^{\nu }}_{\kappa }{{F}^{\lambda \kappa }}</math>
 
<math>{{U}^{i}}_{k}=\left( \begin{matrix}
\frac{1}{\sqrt{1-{{\beta }^{2}}}} & \frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
\frac{-\beta }{\sqrt{1-{{\beta }^{2}}}} & \frac{1}{\sqrt{1-{{\beta }^{2}}}} & 0 & 0  \\
0 & 0 & 1 & 0  \\
0 & 0 & 0 & 1  \\
\end{matrix} \right)</math>
 
Damit läßt sich nun das uns unbekannte Transformationsverhalten der Felder
<math>\bar{E}</math>
und
<math>rot\bar{A}=\bar{B}</math>
berechnen, die auch kovariant transformieren müssen. Dabei sollte keinesfalls die Summation über die Indices auf der rechten Seite vergessen werden !!
 
<math>\begin{align}
& E{{\acute{\ }}^{1}}=F{{\acute{\ }}^{10}}={{U}^{1}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}=-\beta \gamma {{U}^{0}}_{\kappa }{{F}^{0\kappa }}+\gamma {{U}^{0}}_{\kappa }{{F}^{1\kappa }}={{\left( \beta \gamma  \right)}^{2}}{{F}^{01}}+{{\gamma }^{2}}{{F}^{10}}= \\
& ={{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right){{F}^{10}}={{E}^{1}} \\
& {{\gamma }^{2}}\left( 1-{{\beta }^{2}} \right)=1 \\
&  \\
& E{{\acute{\ }}^{2}}=F{{\acute{\ }}^{20}}={{U}^{2}}_{\lambda }{{U}^{0}}_{\kappa }{{F}^{\lambda \kappa }}={{U}^{0}}_{\kappa }{{F}^{2\kappa }}=\gamma {{F}^{20}}-\beta \gamma {{F}^{21}}=\gamma \left( {{E}^{2}}-v{{B}^{3}} \right) \\
\end{align}</math>
 
<math>E{{\acute{\ }}^{3}}=F{{\acute{\ }}^{30}}={{U}^{0}}_{\kappa }{{F}^{3\kappa }}=\gamma {{F}^{30}}-\beta \gamma {{F}^{31}}=\gamma \left( {{E}^{3}}+v{{B}^{2}} \right)</math>
 
<math>\begin{align}
& B{{\acute{\ }}^{1}}=\frac{1}{c}F{{\acute{\ }}^{32}}=\frac{1}{c}{{U}^{3}}_{\lambda }{{U}^{2}}_{\kappa }{{F}^{\lambda \kappa }}=\frac{1}{c}{{F}^{32}}={{B}^{1}} \\
& B{{\acute{\ }}^{2}}=\frac{1}{c}F{{\acute{\ }}^{13}}=\frac{1}{c}{{U}^{1}}_{\lambda }{{U}^{3}}_{\kappa }{{F}^{\lambda \kappa }}=\frac{1}{c}{{U}^{1}}_{\kappa }{{F}^{\kappa 3}}=-\frac{\beta \gamma }{c}{{F}^{03}}+\frac{\gamma }{c}{{F}^{13}}=\gamma \left( {{B}^{2}}+\frac{v}{{{c}^{2}}}{{E}^{3}} \right) \\
\end{align}</math>
 
<math>B{{\acute{\ }}^{3}}=\gamma \left( {{B}^{3}}-\frac{v}{{{c}^{2}}}{{E}^{2}} \right)</math>
 
'''Zusammenfassung'''
 
<math>\begin{align}
& {{E}^{1}}\acute{\ }={{E}^{1}} \\
& {{E}^{2}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{E}^{2}}-v{{B}^{3}} \right) \\
& {{E}^{3}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{E}^{3}}+v{{B}^{2}} \right) \\
& {{B}^{1}}\acute{\ }={{B}^{1}} \\
& {{B}^{2}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{B}^{2}}+\frac{v}{{{c}^{2}}}{{E}^{3}} \right) \\
& {{B}^{3}}\acute{\ }=\frac{1}{\sqrt{1-{{\beta }^{2}}}}\left( {{B}^{3}}-\frac{v}{{{c}^{2}}}{{E}^{2}} \right) \\
\end{align}</math>
 
Elektrische und magnetische Felder werden beim Übergang zwischen verschiedenen Inertialsystemen ineinander transformiert !
 
<u>'''Umeichung:'''</u>
 
<math>{{\tilde{\Phi }}^{\mu }}={{\Phi }^{\mu }}+{{\partial }^{\mu }}\phi </math>
 
Somit:
 
<math>\begin{align}
& {{{\tilde{F}}}^{\mu \nu }}={{\partial }^{\mu }}{{{\tilde{\Phi }}}^{\nu }}-{{\partial }^{\nu }}{{{\tilde{\Phi }}}^{\mu }}={{\partial }^{\mu }}\left( {{\Phi }^{\nu }}+{{\partial }^{\nu }}\phi  \right)-{{\partial }^{\nu }}\left( {{\Phi }^{\mu }}+{{\partial }^{\mu }}\phi  \right) \\
& ={{\partial }^{\mu }}{{\Phi }^{\nu }}-{{\partial }^{\nu }}{{\Phi }^{\mu }}+{{\partial }^{\mu }}{{\partial }^{\nu }}\phi -{{\partial }^{\nu }}{{\partial }^{\mu }}\phi ={{F}^{\mu \nu }} \\
\end{align}</math>
 
<u>'''Homogene Maxwell- Gleichungen'''</u>
 
<math>\begin{align}
& \nabla \cdot \bar{B}={{\partial }_{1}}{{B}^{1}}+{{\partial }_{2}}{{B}^{2}}+{{\partial }_{3}}{{B}^{3}}=0 \\
& \Rightarrow {{\partial }_{1}}{{F}^{32}}+{{\partial }_{2}}{{F}^{13}}+{{\partial }_{3}}{{F}^{21}}=0 \\
&  \\
\end{align}</math>
 
Mit
 
<math>\begin{align}
& {{\partial }_{1}}=-{{\partial }^{1}} \\
& {{F}^{32}}=-{{F}^{23}} \\
& \Rightarrow {{\partial }^{1}}{{F}^{23}}+{{\partial }^{2}}{{F}^{31}}+{{\partial }^{3}}{{F}^{12}}=0 \\
&  \\
\end{align}</math>
 
+ zyklisch in (123)
 
'''innere Feldgleichung für E- Feld'''
 
<math>\nabla \times \bar{E}=-\frac{\partial }{\partial t}\bar{B}</math>
 
# Komponente
 
<math>{{\partial }_{2}}{{E}^{3}}-{{\partial }_{3}}{{E}^{2}}+\frac{\partial }{\partial t}{{B}^{1}}=0</math>
 
<math>\Rightarrow {{\partial }^{0}}{{F}^{23}}+{{\partial }^{2}}{{F}^{30}}+{{\partial }^{3}}{{F}^{02}}=0</math>
und zyklisch (023)
 
zyklische Permutation 1 -> 2 -> 3 -> 1 und mit
 
<math>{{F}^{ik}}=-{{F}^{ki}}</math>
 
liefert:
 
<math>\begin{align}
& \Rightarrow {{\partial }^{0}}{{F}^{13}}+{{\partial }^{3}}{{F}^{01}}+{{\partial }^{1}}{{F}^{30}}=0\quad zyklisch(013) \\
& \Rightarrow {{\partial }^{0}}{{F}^{12}}+{{\partial }^{1}}{{F}^{20}}+{{\partial }^{2}}{{F}^{01}}=0\quad zyklisch(012) \\
\end{align}</math>
 
'''Zusammenfassung der homogenen Maxwellgleichungen'''
 
<math>{{\varepsilon }^{\kappa \lambda \mu \nu }}{{\partial }_{\lambda }}{{F}_{\mu \nu }}=0</math>
 
<math>{{\varepsilon }_{\kappa \lambda \mu \nu }}{{\partial }^{\lambda }}{{F}^{\mu \nu }}=0</math>
 
Die "4- Rotation" des Feldstärketensors verschwindet !
 
'''Levi- Civita- Tensor:'''
'''+1 für gerade Permutation von 0123'''
'''-1 für ungerade Permutation von 0123'''
'''0, sonst'''
 
'''Bemerkungen'''
 
# Levi- Civita ist vollständig antisymmetrisch ( per Definition).
 
#
# <math>{{\varepsilon }^{\kappa \lambda \mu \nu }}</math>
#  transformiert unter Lorentz- Trafo
 
<math>\begin{align}
& {{\varepsilon }^{\kappa \lambda \mu \nu }}\acute{\ }={{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }} \\
& =\left| \begin{matrix}
{{U}^{\kappa }}_{0} & {{U}^{\kappa }}_{1} & {{U}^{\kappa }}_{2} & {{U}^{\kappa }}_{3}  \\
{{U}^{\lambda }}_{0} & {{U}^{\lambda }}_{1} & {{U}^{\lambda }}_{2} & {{U}^{\lambda }}_{3}  \\
{{U}^{\mu }}_{0} & {{U}^{\mu }}_{1} & {{U}^{\mu }}_{2} & {{U}^{\mu }}_{3}  \\
{{U}^{\nu }}_{0} & {{U}^{\nu }}_{1} & {{U}^{\nu }}_{2} & {{U}^{\nu }}_{3}  \\
\end{matrix} \right|=\left( \det U \right)\cdot {{\varepsilon }^{\kappa \lambda \mu \nu }} \\
& \left( \det U \right)=\pm 1 \\
\end{align}</math>
 
Damit nun der Levi- Civita- Tensor invariant unter Lorentz- Trafos wird, also
 
<math>{{\varepsilon }^{\kappa \lambda \mu \nu }}\acute{\ }={{\varepsilon }^{\kappa \lambda \mu \nu }}</math>
, muss vereinbart werden, dass die Transformation lautet
 
<math>{{\varepsilon }^{\kappa \lambda \mu \nu }}\acute{\ }=\left( \det U \right){{U}^{\kappa }}_{\alpha }{{U}^{\lambda }}_{\beta }{{U}^{\mu }}_{\gamma }{{U}^{\nu }}_{\delta }{{\varepsilon }^{\alpha \beta \gamma \delta }}</math>
 
Damit ist der Tensor aber ein Pseudotensor !
 
Insgesamt ist die vierdimensionale Schreibweise die gleiche Formalisierung wie im Dreidimensionalen:
 
<math>{{\left( \nabla \times \bar{A} \right)}_{\alpha }}={{\varepsilon }^{\alpha \beta \gamma }}{{\partial }_{\beta }}{{A}_{\gamma }}</math>
 
Mit Pseudovektor
 
<math>{{\left( \nabla \times \bar{A} \right)}_{\alpha }}</math>


=Inhomogene Maxwellgleichungen im Vakuum=
=Inhomogene Maxwellgleichungen im Vakuum=

Version vom 29. August 2010, 01:44 Uhr




Ko- und Kontravariante Schreibweise der Relativitätstheorie

Grundpostulat der speziellen Relativitätstheorie:

Kein Inertialsystem ist gegenüber einem anderen ausgezeichnet ! ( Einstein, 1904). Die Lichtgeschwindigkeit c ist in jedem Inertialsystem gleich !

  • Kugelwellen sind
  • -> Lorentz- Invariant, also:

Für Lorentz- Transformationen !

Formalisierung: Der Raumzeitliche Abstand als

Zwischen 2 Ereignissen bleibt der raumzeitliche Abstand invariant bei Lorentz- Transformationen ! zwischen den Inertialsystemen :

Ziel: Um dies sofort zu sehen führt man Vierervektoren ein. Dann schreibt man als Skalarprodukt von Vierervektoren im Minkowski- Raum V und man benutze den Formalismus der linearen orthogonalen Transformation , unter denen das Skalarprodukt invariant bleibt:

In der ko / kontravarianten Schreibweise tritt jeder Vierervektor in 2 möglichen Versionen auf:

kontravariante Komponenten:

als Komponenten des Ortsvektors

kovariante Komponenten

kovarianter Vektor , dualer Vektorraum zu V ! Merke: Die Räume der kovarianten Vektoren ist dual zur menge der kontravarianten -> als Raum der linearen Funktionale l:

Damit werden dann die Skalarprodukte gebildet !

Schreibe

Mit: Summenkonvention ! über je einen ko- und einen kontravarianten Index ( hier i =0,1,2,3) wird summiert !

Physikalische Anwendung

Lorentz- Invarianten lassen sich als Skalarprodukt schreiben !

Beispiel: dÁlemebert- Operator:

Vierergeschwindigkeit

Physikalische Interpretation

Viererimpuls

mit der Ruhemasse m0

Also:

Mit der Energie

Analoge Definition von Tensoren 2. Stufe:

Der metrische Tensor

Mittels der Metrik werden Indices gehoben bzw. gesenkt:

Wichtig fürs Skalarprodukt:

Lorentz- Trafo

zwischen Bezugssystemen: Lineare / homogene Trafo

die Lorentz- Transformation für

Nämlich:

Mit

für

Wesentliche Eigenschaft ( die Viererschreibweise ist so konstruiert worden):

U ist orthogonale Trafo:

Das Skalarprodukt ist invariant, falls U eine orthogonale Trafo ist Bzw. Forderung: Skalarprodukt invariant -> U muss orthogonale Trafo sein !

Umkehr- Transformation:


Die Abfrage enthält eine leere Bedingung.



Inhomogene Maxwellgleichungen im Vakuum

( Erregungsgleichungen)

  1. Komponente

Dies kann analog für die zweite und dritte Komponente durchgeixt werden. Aus der Nullten Komponente hatten wir die Nullte des Stroms ( Erregungsgleichung des elektrischen Feldes), so dass insgesamt folgt:

Die Viererdivergenz des elektrischen Feldstärketensors !

Bemerkungen

  1. die homogenen Maxwellgleichungen sind durch den Potenzialansatz

automatisch erfüllt:

Aus den inhomogenen Maxwell- Gleichungen

folgt mit Lorentz- Eichung

als inhomogene Wellengleichung

Die Maxwellgleichungen

sind ihrerseits nun Lorentz- kovariant, da sie durch 4 Pseudovektoren ausgedrückt sind. Merke: Pseudo - 4- Vektor stört nicht, da rechte Seite gleich Null !!

Gauß- System:

Relativistisches Hamiltonprinzip

Ziel: Formulierung der Elektrodynamik als Lagrange- Feldtheorie

Die rel. Dynamik eines Massepunktes kann aus dem Extremalprinzip abgeleitet werden, wenn man Die Punkt 1 und 2 als Anfangs- und Endereignis im 4- Raum sieht und wenn man die Ränder bei Variation festhält:

letzteres: Wirkungsintegral Wichtig:

Newtonsche Mechanik ist Grenzfall:

Wechselwirkung eines Massepunktes mit einem 4- Vektor- Feld

mit den Lorentz- Invarianten

und

Variation:

Nun:

Außerdem:

Somit:

Weiter mit partieller Integration:

Weiter:

Mit

Einsetzen in

liefert:

Wegen

Dies ist dann die aus dem hamiltonschen Prinzip abgeleitete Bewegungsgleichung eines Massepunktes der Ruhemasse m0 und der Ladung q unter dem Einfluss der Lorentz- Kraft.

Man setze:

Man bestimmt die Ortskomponenten über

überein, denn mit

folgt dann:

mit

Die zeitartige Komponente gibt wegen

Dies ist die Leistungsbilanz: Die Änderung der inneren Energie ist gleich der reingesteckten Arbeit

Eichinvarianz und Ladungserhaltung

Wirkungsintegral:

Dabei:

( Teilchen)

( Teilchen- Feld- Wechselwirkung)

Verallgemeinerung auf kontinuierliche Massendichte

Vorsicht: m ist hier Massendichte !!!

dOmega als Volumenelement im Minkowski- Raum !!!

Bemerkungen:

  1. ist eine Lorentz- Invariante , da das Volumen unter orthogonalen Transformationen

erhalten bleibt.

2) Aus

folgt, dass die Vierer- Massenstromdichte mit Massendichte m=

ein Vier- Vektor ist, da Lorentz- Skalare sind und natürlich selbst auch ein Vierervektor

  1. ist Lorentz - Invariant.

Also ist Lorentz- Invariant. Also auch .

Somit ist insgesamt Lorentz- Invariant !