Mikroskopisches Modell der Polarisierbarkeit: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
Einrückungen Mathematik
*>SchuBot
K Interpunktion, replaced: ! → ! (7), ( → ( (5)
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 11: Zeile 11:
:<math>\bar{P}</math>
:<math>\bar{P}</math>
für ein gegebenes Feld
für ein gegebenes Feld
:<math>\bar{E}</math>
:<math>\bar{E}</math>.
.
 


'''Nebenbemerkung: '''Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation
'''Nebenbemerkung: '''Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation
Zeile 42: Zeile 42:




Wichtig ! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber ! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig , aber hier homogen verteilt !-> einfache Integration.
Wichtig! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig, aber hier homogen verteilt!einfache Integration.


Auswertung liefert
Auswertung liefert
Zeile 57: Zeile 57:


setzt man
setzt man
:<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>
:<math>\bar{r}\acute{\ }=\bar{r}-{{\bar{r}}_{e}}</math>,
, wobei
wobei
:<math>{{\bar{r}}_{e}}</math>
:<math>{{\bar{r}}_{e}}</math>
das Zentrum der elektrischen Ladung angibt,
das Zentrum der elektrischen Ladung angibt,
Zeile 74: Zeile 74:
:<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>
:<math>{{\bar{F}}_{e}}=-{{\bar{F}}_{K}}</math>


Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld
Aufstellen der Bewegungsgleichungen (inklusive einem äußeren Feld
:<math>{{\bar{E}}_{a}}</math>
:<math>{{\bar{E}}_{a}}</math>)
):
:


:<math>\begin{align}
:<math>\begin{align}
Zeile 99: Zeile 99:
\end{align}</math>
\end{align}</math>


Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial ! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können !
Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können!


Jedenfalls im stationären Zustand gilt:
Jedenfalls im stationären Zustand gilt:
Zeile 105: Zeile 105:
:<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>
:<math>\bar{r}=\frac{e}{{{\omega }_{0}}^{2}{{m}_{e}}}{{\bar{E}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)</math>


( Dynamik mit Dämpfung)
(Dynamik mit Dämpfung)


:<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>
:<math>\Rightarrow {{\chi }_{e}}\left( \omega  \right)</math>
Zeile 173: Zeile 173:
Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.
Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.


Dann: ro -> 0
Dann: ro 0




Zeile 195: Zeile 195:


Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet.
Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet.
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:
Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation (eigentlich Dipoldichte) umschreiben:


:<math>\begin{align}
:<math>\begin{align}
Zeile 212: Zeile 212:
:<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>
:<math>{{\bar{E}}_{Kugel}}=-\nabla \Phi =-\frac{1}{{{\varepsilon }_{0}}}\frac{{\bar{P}}}{3}r\le a</math>


für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).
für das elektrische Feld im Inneren der Kugel (homogen polarisiert).


<u>'''Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:'''</u>
<u>'''Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:'''</u>
Zeile 239: Zeile 239:
sein muss
sein muss


Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel ( wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld !
Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel (wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld!


'''Zusammenhang zwischen P und makroskopischem Feld E:'''
'''Zusammenhang zwischen P und makroskopischem Feld E:'''

Aktuelle Version vom 12. September 2010, 23:22 Uhr




Ziel: Berechnung der Materialkonstanten

5.5 Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten

χe

aus einfachen mikroskopischen Modellen Methode: Berechne die induzierte mittlere elektrische Dipoldichte

P¯

für ein gegebenes Feld

E¯.


Nebenbemerkung: Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation

Klassisches Atommodell:

homogen geladene Kugel mit Radius R und Elektronenladung

Qe=Ze<0

Außerdem ein punktförmiger Kern mit

Qk=+Ze>0

am Ort

r¯k

Merke:

Auch diese Berechnungen geschehen, wie im NOTFALL grundsätzlich zu empfehlen, durch Lösen integraler Darstellungen der Maxwellgleichungen

Ziel: Berechnung des elektrischen Feldes

E¯el.(r¯)

der Elektronen nach außen:

Gauß- Gesetz


Vd3rD¯(r¯,t)=Vd3rρ(r¯,t)=Q=Vdf¯D¯(r¯,t)

Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen


Wichtig! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig, aber hier homogen verteilt!→ einfache Integration.

Auswertung liefert

ε0V(r´)df¯E¯(r¯,t)=V(r´)Q43πR3=r´3R3Q4r´2πε0|E¯(r¯,t)|=r´3R3Q|E¯(r¯,t)|=r´4πε0R3Q

Natürlich nur für

r´R

setzt man

r¯´=r¯r¯e,
wobei
r¯e

das Zentrum der elektrischen Ladung angibt,

so gewinnt man das rotationssymmetrische Ergebnis

E¯(r¯,t)=r¯r¯e4πε0R3Qe

und die Kraft auf den Kern folgt gemäß:

F¯K=QKE¯(r¯´k,t)=r¯kr¯e4πε0R3QeQk=Z2e24πε0R3(r¯kr¯e)

wegen actio = reactio folgt dann für die Kraft auf die Elektronen:

F¯e=F¯K

Aufstellen der Bewegungsgleichungen (inklusive einem äußeren Feld

E¯a)
mKr¯¨k=F¯K+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+ZeE¯a(r¯´k,t)Zmer¯¨e=F¯K+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)ZeE¯a(r¯´k,t)

Also folgt für die Relativbewegung:

r¯=r¯kr¯e

als relativer Abstand

r¯¨=r¯¨kr¯¨e=Z2e24πε0R3mK(r¯kr¯e)+ZemKE¯a(r¯´k,t)Ze24πε0R3me(r¯kr¯e)+emeE¯a(r¯k,t)=Z2e24πε0R3(1mK+1Zme)(r¯kr¯e)+Ze(1mK+1Zme)E¯a(r¯k,t)(1mK+1Zme)1Zme(r¯kr¯e)=r¯r¯¨=Ze24πε0meR3r¯+emeE¯a(r¯k,t)Ze24πε0meR3:=ω02r¯¨+ω02r¯=emeE¯a(r¯k,t)

Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können!

Jedenfalls im stationären Zustand gilt:

r¯=eω02meE¯a(r¯k,t)

(Dynamik mit Dämpfung)

χe(ω)

Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:

p¯=Zer¯=Ze2ω02meE¯a(r¯k,t)=ε0αE¯aα:=Ze2ω02ε0meZe24πε0meR3:=ω02α:=Ze2ω02ε0me=4πR3=3VAtom

Die Polarisierbarkeit des Atoms, ein mikroskopischer Parameter. Entsprechend:

p¯=Vd3r´ρe(r´)r¯´+ZeVd3r´δ(r¯r¯´)ZeVd3r´δ(r¯r¯´)=Zer¯Vd3r´ρe(r´)r¯´=Ze4π3R3Vd3r´r¯´Vd3r´r¯´=0

wegen Symmetrie

p¯=Zer¯

makroskopisch gemittelte Energiedichte:

P¯=np¯=ε0nαE¯a

mit der mittleren Atomdichte n

Selbstkonsistente Berechnung des Lokalfeldes Ea:

Wichtig: Berücksichtigung der Felder, die durch andere elektrische Dipole erzeugt werden:

Gedankenexperiment


Feld einer homogenen polarisierten Kugel:

Ansatz: homogen geladene Kugel:

E¯0(r¯)=Q4πε0{r¯a3rar¯r3ra

Also:


Φ0(r¯)=Q4πε0{cr¯22a3ra1rra

Bestimmung der Integrationskonstanten:

limε>0Φ0(aε)=Φ0(a+ε)c=32a

die homogen polarisierte Kugel

Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.

Dann: ro → 0


Bilde:

Φ0(r¯)=Φ0(r¯12r¯0)Φ0(r¯+12r¯0)r¯0Φ0(r¯)Φ0(r¯)=E¯0Φ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=14πε0{p¯r¯a3rap¯r¯r3rap¯:=Qr¯0

Das Dipolmoment der herausgeschnittenen Kugel.

Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet. Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation (eigentlich Dipoldichte) umschreiben:

P¯=p¯43a3πΦ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=1ε0{P¯r¯3raP¯r¯a3r3ra

Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.

E¯Kugel=Φ=1ε0P¯3ra

für das elektrische Feld im Inneren der Kugel (homogen polarisiert).

Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:


das äußere Feld wird erzeugt durch Atome, die sich außerhalb der Hohlkugel befinden. Das innere Feld durch Atome im Inneren der Hohlkugel. Gezeichnet: Lokalfeld einer polarisierten dielektrischen Kugel im homogenen elektrischen Feld


Das Lokalfeld im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:

E¯a(r¯)=E¯E¯KUgel
E¯a(r¯):LokalfeldE¯:makroskopischE¯a(r¯)=E¯+13ε0P¯

Letztes wurde von Lorentz eingeführt als "Korrekturfeld"

weil

E¯a+E¯Kugel=E¯

sein muss

Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel (wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld!

Zusammenhang zwischen P und makroskopischem Feld E:

P¯=ε0nαE¯a=ε0nα(E¯+13ε0P¯)P¯=ε0χeE¯χe=nα113nαnα=χe1+13χe=ε11+ε13=3ε1ε+2

Formel von Clausius - Masotti für polarisierte Kugel