Das ideale Fermigas: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
*>SchuBot
K Interpunktion, replaced: ! → ! (30), ( → ( (8)
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 144: Zeile 144:
====Thermodynamischer limes (großes Volumen V):====
====Thermodynamischer limes (großes Volumen V):====


'''Übergang zum Quasikontinuum:'''
'''Übergang zum {{FB|Quasikontinuum}}:'''


:<math>\begin{align}
:<math>\begin{align}
Zeile 176: Zeile 176:
\end{align}</math>
\end{align}</math>


sogenannte Fugizität!
sogenannte {{FB|Fugizität}}!


:<math>\begin{align}
:<math>\begin{align}
Zeile 202: Zeile 202:
\end{align}</math>
\end{align}</math>


Mit der Fermi- Verteilung <math>\left\langle N(p) \right\rangle </math>
Mit der Fermi- Verteilung <math>\left\langle N(p) \right\rangle </math>, also:
,
also:


:<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>
:<math>\ln Y=\frac{2}{3}\beta \left( 2s+1 \right)\left( \frac{V}{{{h}^{3}}} \right)4\pi \int_{0}^{\infty }{{}}dp{{p}^{2}}\left\langle N(p) \right\rangle E(p)</math>
Zeile 218: Zeile 216:
\end{align}</math>
\end{align}</math>


Somit haben wir die thermische Zustands-Gleichung
Somit haben wir die '''thermische Zustands-Gleichung'''


:<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>
{{Gln|<math>pV=kT\ln Y=\frac{2}{3}U=\frac{2}{3}\left\langle {{E}^{ges.}} \right\rangle </math>|thermische Zustands Gleichung}}


'''Bemerkungen'''
{{Bem|1='''Bemerkungen'''


Dies gilt auch für ein klassisches ideales Gas!
Dies gilt auch für ein klassisches ideales Gas!
Zeile 240: Zeile 238:
Später werden wir sehen: Das gilt auch für Bose- Verteilung!!
Später werden wir sehen: Das gilt auch für Bose- Verteilung!!


Also unabhängig von der speziellen Statistik!
Also '''unabhängig''' von der speziellen Statistik!}}


==Entartetes Fermi-Gas==
==Entartetes Fermi-Gas==
Zeile 301: Zeile 299:
<u>'''Entwicklung für'''</u>
<u>'''Entwicklung für'''</u>


:<math>\eta >>1\Rightarrow \xi >>1</math>
:<math>\eta >>1\Rightarrow \xi >>1</math>, also Entartung:
,
also Entartung:


:<math>\begin{align}
:<math>\begin{align}
Zeile 564: Zeile 560:


!
!


== Spezifische Wärme ==
== Spezifische Wärme ==
Zeile 748: Zeile 743:
'''Nebenbemerkung:'''
'''Nebenbemerkung:'''


Mit der '''thermischen Wellenlänge '''<math>\lambda :={{\left( \frac{{{h}^{2}}}{2\pi mkT} \right)}^{\frac{1}{2}}}</math>
Mit der {{FB|thermischen Wellenlänge}} <math>\lambda :={{\left( \frac{{{h}^{2}}}{2\pi mkT} \right)}^{\frac{1}{2}}}</math> entsprechend der {{FB|de Broglie-Wellenlänge}} für <math>\frac{{{k}^{2}}{{\hbar }^{2}}}{2m}\tilde{\ }kT\Rightarrow \lambda ={{\left( \frac{{{h}^{2}}}{2mkT} \right)}^{\frac{1}{2}}}</math>
 
entsprechend der de Broglie- Wellenlänge für <math>\frac{{{k}^{2}}{{\hbar }^{2}}}{2m}\tilde{\ }kT\Rightarrow \lambda ={{\left( \frac{{{h}^{2}}}{2mkT} \right)}^{\frac{1}{2}}}</math>


E= kT also, schreibt man:
E= kT also, schreibt man:


:<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>
:<math>{{N}_{C}}=\frac{2s+1}{{{\lambda }^{3}}}</math>
[["category":"uncategorized"]]

Aktuelle Version vom 9. August 2011, 15:25 Uhr




  1. Teilchen- Zustände sind die Eigenzustände zur 1- Teilchen- Energie Ei

Großkanonischer Statistischer Operator:

Die Wahrscheinlichkeit, das System in einem bestimmten Zustand zu finden ist gleich dem Erwartungswert des statistischen Operators in diesem Zustand:

Also für den Vielteilchenzustand :

mit der Einteilchenenergie Ej und den Besetzungszahlen Nj

Diese Wahrscheinlichkeit ist:

Dies ist ein Ergebnis für einen Zustand!

Die Großkanonsiche Zustandsumme Y gewinnt man, indem man über alle möglichen Vielteilchenzustände noch summiert, also:

Jetzt muss bei der Auswertung die unterschiedliche Teilchenart berücksichtigt werden, nämlich in der Summation über Nj. Handelt es sich um Fermionen, so wird nur bis 1 summiert. Handelt es sich um Bosonen, so wird bis unendlich summiert!

Fermionen

Also folgt:

separiert!!

Dies als Gesamtwahrscheinlichkeit, das System mit der Besetzung zu finden!

Mittlere Besetzungszahl im Einteilchenzustand :

Aus mit

folgt:

Also:


Die Fermi-Verteilung!


Dies folgt auch explizit aus

speziell folgt dies auch aus

aber nur wegen Nj = 0,1

  • 2 Möglichkeiten! → Mittelwert liegt in der Mitte
rechts besetzte und links unbesetzte Zustände

FJ: Nj:=1/(1+exp((Ej-mue)/Boltz)); 1 Nj := --------------------- 1 + exp(1/5 Ej - 1/5) > Boltz:=5; Boltz := 5 > mue:=1; mue := 1 * plot(Nj,Ej=0..50);]]

Für T → 0
(Stufenfunktion), sogenannter Quantenlimes!
T>0
Aufweichungszone bei der Breite

(sehr hohe Energien) →

  • die Fermiverteilung nähert sich der Boltzmann- Verteilung an (klassischer Grenzfall!!)
  • keine Berücksichtigung des Pauli- Prinzips mehr!


Beispiel einer Maxwell- Boltzmann- Verteilung sehr hoher Energien!

Gesamte mittlere Teilchenzahl
thermische Zustandsgleichung

Energie und Zustandsdichte freier Teilchen

Energie- Eigenwerte:

Das System sei in einem Würfel V = L³ eingeschlossen!

Zyklische Randbedingungen (Born - v. Karman):

Ein Zustand im k- Raum beansprucht also das Volumen:

Dabei wurde jedoch kein Spin berücksichtigt!

Thermodynamischer limes (großes Volumen V):

Übergang zum Quasikontinuum:

In Übereinstimmung mit Kapitel 4.1, Seite 100

Spinentartung:

(2s+1)- fache Entartung!

Kugelsymmetrisches Integral:

Großkanonische Zustandssumme:

sogenannte Fugizität!

Partielle Integration:

Mit der Fermi- Verteilung , also:

Diskret:

Somit haben wir die thermische Zustands-Gleichung




Bemerkungen

Dies gilt auch für ein klassisches ideales Gas!

Klassisch:

Später werden wir sehen: Das gilt auch für Bose- Verteilung!!

Also unabhängig von der speziellen Statistik!


Entartetes Fermi-Gas

Klassischer Grenzfall der Fermi- Verteilung:

(Maxwell- Boltzmann- Verteilung)

für

(stark verdünnt)

  • klassischer Limes!
  • Merke positives chemisches Potenzial ist ein QM- Grenzfall!!

Nichtklassischer Grenzfall ("Fermi- Entartung ")

Für

(Grenzfall hoher Dichte!)


Gesamte Teilchenzahl:

Innere Energie:

Substitution

Definition: Fermi- Dirac- Integral der Ordnung s:

Entwicklung für

, also Entartung:

weitere Substitution:

Somit kann man die Grenzen erweitern, da

Dies kann man durch Entwicklung von

lösen:

Somit:

Für die Terme gilt im Einzelnen:

Bleibt Integral I zu lösen:

Somit ergibt sich das Fermi- Dirac- Integral gemäß

Speziell:

Also:

Definition: Fermi- Energie:

Bei T= 0 Kelvin sind die Zustände mit

voll besetzt, die anderen leer!

Wir können dann

durch

und

eliminieren:

T→0

Für größere Temperaturen T>0 wird nun

in niedrigster Ordnung in

entwickelt und diese Entwicklung dann eingesetzt in die Formel

Jetzt wird in niedrigster Ordnung in

entwickelt:

Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf:

die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt!

Innere Energie

Also:

Verwende:

So dass:

Mit

folgt:

Somit haben wir die kalorische Zustandsgleichung

und die thermische Zustandsgleichung

Das bedeutet:

Der Druck des fermigases ist um einen Faktor

größer als in klassischen idealen Gasen

Beispiel:

1 eV entspricht 10.000 K!!

Grund ist das Pauli- Prinzip!!

Also eine effektive Abstoßung der Teilchen! Dies bewirkt für niedrige Temperaturen den enormen Faktor

,

mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist.

Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt:

Der Fermidruck ist etwa

Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor

!

Spezifische Wärme

Die Wärmekapazität ist sage und schreibe um den Faktor

kleiner als bei idealen gasen.

Bei T ~ 300 K ist dies 1/ 40!

ideales Gas:

Physikalsicher Grund:

Nur die Teilchen in der " Aufweichungszone"

tragen zur spezifischen Wärme bei, da nur sie in freie Zustände thermisch angeregt werden könen :

Zahl:

jedes hat Energie ~ kT


Beispiele für entartete Fermigase

  • Elektronen in Metallen → hohe Dichten!
  • Elektronen in Halbleitern, bei sehr tiefen Temperaturen oder hoher Dotierung!

Nichtenatartetes fermigas

verdünntes, nichtrelativistisches Quantengas!

z.B. Elektronen in Halbleitern im Normalbereich!

Voraussetzung:

das heißt:

Entwicklung der Fermi- Dirac- Integrale nach Potenzen von

Dabei ist

das Boltzman- Limit mit der Quantenkorrektur

Also:

mit der Entartungskonzentration

Also genähert:

Bei vollständiger Nichtentartung:

Die klassische Maxwell- Boltzmann- Verteilung (vergl. S. 101)

Elimination von

durch

  1. Näherung:
  1. Näherung

Dabei wurden alle Terme der Ordnung

weggenähert!

Also:

kalorische Zustandsgleichung

mit der Quantenkorrektur

thermische Zustandsgleichung

Also:

Dabei ist

die Zustandsgleichung des klassischen idealen Gases und

eine Erhöhung des klassischen Drucks durch die Fermi- Abstoßung!

Nebenbemerkung:

Mit der thermischen Wellenlänge entsprechend der de Broglie-Wellenlänge für

E= kT also, schreibt man: