Grenzbedingungen für Felder

Aus PhysikWiki
Version vom 29. August 2010, 01:34 Uhr von Schubotz (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|5|4}}</noinclude> _ Frage ist: Wie verhalten sich <math>\bar{B},\bar{H},\bar{D},\bar{E}</math> an Grenzflächen, die ve…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




_ Frage ist: Wie verhalten sich an Grenzflächen, die verschiedene elektrische und magnetische Materialien ( Vakuum/ Materie) trennen ?

Integration der Maxwell- Gleichungen über ein Volumen V:


Bildlich:

Normalkomponenten: Betrachte einen Zylinder, der senkrecht auf einer Grenzfläche steht. Nun nimmt man die Maxwellgleichungen in integraler Schreibweise an und läßt den Zylinder unter Berücksichtigung von Integrationssätzen gegen Null- Höhe gehen:

also: Für die Normalkomponenten: h -> 0

Während also die Normalkomponente des B- Feldes an der Grenzfläche stetig ist, springt die Normalkomponente der dielektrischen Verschiebung um die Ladung, die an der Grenzfläche sitzt: Unter der Annahme, dass die Grenzfläche die freie Flächenladungsdichte trägt:

Somit müssen die Integranden übereinstimmen:

Tangentialkomponenten

Anwendung des verallgemeinerten Gaußschen Satz:

Auch hier: h-> 0

In beiden Fällen die Tangentialkomponenten der Felder ! senkrecht auf Flächenvektor und Feld

Wegen:

Annahme: Grenzfläche trägt (freie) Flächenstromdichte

wie es bei metallen der Fall ist !, dann:

Weiter:

können für Volumenintegrale mit verschwindendem Volumen nur einen Beitrag liefern, wenn Unendlichkeitsstellen besitzen.

Annahme:

und sind beschränkt:

Somit haben wir die Grenzbedingungen für die Tangentialkomponenten:

Das heißt:

Die Tangentialkomponente des elektrischen Feldes E ist am Grenzübergang stetig Die Tangentialkomponente des magnetischen Feldes H springt am Grenzübergang um die Flächenstromdichte !

Bildlich: Sitzen Ladungen an einer Grenzfläche, so ist die Normalkomponente von D ( wichtig: Polarisationseffekt -> Polarisation muss irgendwo mit auftauchen) nicht stetig ! Fließen flächenartige Ströme entlang einer Grenzfläche, so ist die Tangentialkomponente von H nicht stetig !

Zusammenfassung:

Maxwellgleichung Grenzbedingung

Also: die Tangenzialkomponente von E ist stetig Die Normalkomponente von D springt um die Flächenladungsdichte ( Flächendivergenz) Die Tangentialkomponente von H springt ( Flächenrotation) um die Flächenstromdichte Die Normalkomponente von B ist stetig.

Beispiele:

  1. Grenzfläche zwischen 2 dielektrischen Materialien mit


Zuerst zeichne man sich ein derartiges Diagramm hin !

letzteres wegen der verschwindenden Flächenladungsdichte !

Dies ist das Brechungsgesetz für die Feldlinien

Achtung ! Das Snelliussche Brechungsgesetz müsste man sich für den Verlauf des Energiestroms berechnen

  1. Grenzfläche zwischen Vakuum ( Luft) und magnetischem Material

2.1 Sei speziell Grenzfläche ( z.B. zwischen den Polschuhen eines Ringmagneten mit Luft dazwischen / Material genauso !)): In diesem Fall (keine Oberflächenströme) ist grundsätzlich stetig ! B ist eh immer grundsätzlich stetig ! Wegen der Divergenzgleichung wird B immer ( wie D´) für Normalkomponenten herangezogen.

  1. Paramagnetisch:


  1. Paramagnetisch:


2.2 Sei speziell Grenzfläche ( z.B. lange Spule mit Luft dazwischen / Material genauso !)): Wir müssen nun Tangentialkomponenten untersuchen. Dazu nimmt man die Rotationsgleichungen ( E und H):

In diesem Fall ist stetig für ( kein Oberflächenstrom)