Spezielle Verteilungen

Aus PhysikWiki
Version vom 31. August 2010, 22:56 Uhr von Schubotz (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Thermodynamik|2|5}}</noinclude> Durch Angabe eines Satzes der <math>\left\langle {{M}^{n}} \right\rangle </math> oder des Satzes der …“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen




Durch Angabe eines Satzes der

oder des Satzes der intensiven Parameter

ist die Verteilung vollständig festgelegt.

Letztere sind die Lagrange- Parameter, die durch die Art des Kontaktes mit der Umgebung ( "großes" reservoir oder Bad, dessen intensive Variable sich nicht durch den Kontakt ändert), bestimmt:


Entropie:

Vergleiche Kapitel 1.3

mit

wegen

U=

und

folgt:

Merke:

ist Legendre- Transformierte von

Energie

Legendre- Transformation von

mit

  • Energieform

Freie Energie oder auch Helmholtzsche Energie

ii) Druck - Ensemble


Wärmekontakt + mechanischer Arbeitskontakt

Entropie

Gibbsche Fundamnetalgleichung

Energie

Legendre- Transformation bezüglich

und

Gibbsche Freie Energie

iii) Magnetfeld - Ensemble


Wärmeaustausch+ Magnetisierungsarbeit:

Mit der magnetischen Induktion

und der Magnetisierung

.

Gibbsche Fundmanetalgleichung

Entropie:

  • Energie

Legendre- Transformation bezüglich

und

Gibbsche Freie Energie

iv) Großkanonische Verteilung


Teilchenzahlen der Sorte

.

mit

als chemisches Potenzial der Species

.

großkanonische Verteilung:

  • Wärmeaustausch und Teilchenaustausch möglich ( z.B. chemische Reaktion, etc...)

hängt parametrisch von V (FEST) ab

mit der großkanonischen Zustandssumme

Also:

Gibbsche Fundamentalgleichung für dV=0

mit

Definition des chemischen Potenzials !!

Also gilt für die innere Energie:

Vergleich mit der phänomenologischen Relation des Energiesatzes:

ergibt:

Experiment:

2 Gefäße sind miteinander verbunden, tragen die Teilchenzahlen

und

Vor Einstellung des Gleichgewichts gilt:

für konstantes U,V und

( Die Teilchen können nur von dem einen Gefäß ins andere)

folgt aus

Also: Der Teilchenstrom erfolgt vom höheren z.B.

zum tieferen, z.B.

Potenzial, also:

abgelitten aus der Gibbschen Fundamentalrelation:

Mikrokanonische Verteilung

Alle extensiven Größen sind scharf, also keine Zufallsgrößen. SOndern: feste Parameter der Verteilung

Volumen V

Teilchenzahl N

innere Energie

Die Messung des Hamiltonoperators ergibt eine Energie im Rahmen der Messunschärfe. Alle Größen sind festgelegt heisst: Es gibt kein Ensemble, das einen statistischen Mittelwert bildet, sondern: Die Energie ist so genau, wie die Energie eines Teilchens, nämlich an die Unschärfe gebunden !


Physikalisch:

Dünne Energieschale im Phasenraum, z.B.

( Kugelschale)

Nebenbemerkung:

Für

( scharfe Energiefläche)

ist die Normierung der Wahrscheinlichkeit

nicht mit endlichem

zu erfüllen, da

Vorurteilsfreie Schätzung

  • Gleichverteilung auf der Energieschale
  • :

charakteristische Funktion !

für

Mit der Normierung

Dabei ist also

das von

eingeschlossene Phasenraumvolumen !

Entropie:

In Übereinstimmung mit der allgemeinen Formel:

für

Große Systeme:

Dimension des Phasenraums:

Phasenraumvolumen

mit r = Länge im

Raum

entspricht 1 Dimension im

Raum.

Kleine Änderung:

Also:

Das heißt: große Änderung von

, selbst bei winzigen Änderungen von U !

Also: In hochdimensionalen Räumen ist das Volumen praktisch an der Oberfläche einer Kugel lokalisiert !

Definition der Temperatur:

Die Änderung der Entropie über der inneren Energie ist gerade das Inverse der Temperatur !!