Weitere Eigenschaften der Dirac-Gleichung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:
Wir starten von
Wir starten von


{{NumBlk|:| <math>i{{\partial }_{t}}\Psi =\left( \underline{a}.\underline{\hat{p}}+\beta m \right)\Psi </math>
{{NumBlk|:|<math>i{{\partial }_{t}}\Psi =\left( \underline{a}.\underline{\hat{p}}+\beta m \right)\Psi </math>|(1.45)|RawN=.}}


|(1.45)|RawN=.}}
# Kontinuitätsgleichung mit <math>{{\Psi }^{+}}</math>(1.45) und (1.45)+<math>\Psi </math>


*# Kontinuitätsgleichung mit <math>{{\Psi }^{+}}</math>(1.45) und (1.45)+<math>\Psi </math>
:<math>\begin{align}
 
<math>\begin{align}


& \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi  \\
& \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi  \\
Zeile 25: Zeile 23:
\end{align}</math>
\end{align}</math>


mit der {{FB|Wahrscheinlichkeitsdichte}} ρ und der {{FB|Wahrscheinlichkeitsstromdichte}} j<sub>k.</sub>
:mit der {{FB|Wahrscheinlichkeitsdichte}} ρ und der {{FB|Wahrscheinlichkeitsstromdichte}} j<sub>k.</sub>


{{NumBlk|:|
{{NumBlk|:|
Zeile 45: Zeile 43:
: |(1.47)|RawN=.}}
: |(1.47)|RawN=.}}


Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors <math>\Psi </math> zusammen.
:Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors <math>\Psi </math> zusammen.


*# Lorentz-Invarianz
#<li value="2"> Lorentz-Invarianz</li>
Umdefinieren der Matrizen <math>{{\underline{\underline{\alpha }}}_{k}},\underline{\underline{\beta }}</math>als
Umdefinieren der Matrizen <math>{{\underline{\underline{\alpha }}}_{k}},\underline{\underline{\beta }}</math>als


Zeile 64: Zeile 62:
-{{\sigma }_{k}} & 0  \\
-{{\sigma }_{k}} & 0  \\


\end{matrix} \right)</math>
\end{matrix} \right)</math> |(1.48)|RawN=.}}
 
: |(1.48)|RawN=.}}


{{NumBlk|:|
{{NumBlk|:|
Zeile 84: Zeile 80:
(z.B. <math>{{\gamma }^{k}}{{\gamma }^{j}}+{{\gamma }^{j}}{{\gamma }^{k}}=\beta {{\alpha }_{k}}\beta {{\alpha }_{j}}+\beta {{\alpha }_{j}}\beta {{\alpha }_{k}}\underbrace{=}_{1.32}-{{\alpha }_{k}}{{\beta }^{2}}{{\alpha }_{j}}-{{\alpha }_{j}}{{\beta }^{2}}{{\alpha }_{k}}=-2{{\delta }_{jk}}</math>)
(z.B. <math>{{\gamma }^{k}}{{\gamma }^{j}}+{{\gamma }^{j}}{{\gamma }^{k}}=\beta {{\alpha }_{k}}\beta {{\alpha }_{j}}+\beta {{\alpha }_{j}}\beta {{\alpha }_{k}}\underbrace{=}_{1.32}-{{\alpha }_{k}}{{\beta }^{2}}{{\alpha }_{j}}-{{\alpha }_{j}}{{\beta }^{2}}{{\alpha }_{k}}=-2{{\delta }_{jk}}</math>)


<u>Relativistische Notation:</u>
 
== Relativistische Notation ==


kontravarianter Vierervektor{{FB|Vierervektor}} mit Index oben
kontravarianter Vierervektor{{FB|Vierervektor}} mit Index oben
Zeile 140: Zeile 137:


\end{matrix} \right)</math>.
\end{matrix} \right)</math>.
----


* Invarianz von <math>{{x}_{\mu }}{{x}^{\mu }}</math>unter Lorentz-Transformationen:
* Invarianz von <math>{{x}_{\mu }}{{x}^{\mu }}</math>unter Lorentz-Transformationen:
Zeile 191: Zeile 186:
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)


<u>''Lorentz''-Transformation</u>
 
== ''Lorentz''-Transformation ==


Koordinaten <math>x{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math>
Koordinaten <math>x{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math>
Zeile 207: Zeile 203:
<math>\gamma {{'}^{\nu }}={{\gamma }^{\nu }}</math>
<math>\gamma {{'}^{\nu }}={{\gamma }^{\nu }}</math>


----


Also muss gelten  
Also muss gelten  
----


<math>\left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\Rightarrow \left( \mathfrak{i} {{\gamma }^{\nu }}{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{\partial }_{\mu }}-m \right)S\Psi =0</math>
<math>\left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\Rightarrow \left( \mathfrak{i} {{\gamma }^{\nu }}{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{\partial }_{\mu }}-m \right)S\Psi =0</math>


----


Multiplikation von S<sup>-1</sup> von links
Multiplikation von S<sup>-1</sup> von links
Zeile 324: Zeile 315:
|(1.60)|RawN=.}}
|(1.60)|RawN=.}}


Berechnung <font color="#FFFF00">'''''(AUFGABE)''''' </font>ergibt
Berechnung <font color="#33FF99">'''''(AUFGABE)''''' </font>ergibt


{{NumBlk|:| <math>S\left( \beta  \right)=\cosh \frac{\beta }{2}+\sinh \left( \frac{\beta }{2} \right){{\underline{\underline{\gamma }}}^{1}}{{\underline{\underline{\gamma }}}^{0}}</math>
{{NumBlk|:| <math>S\left( \beta  \right)=\cosh \frac{\beta }{2}+\sinh \left( \frac{\beta }{2} \right){{\underline{\underline{\gamma }}}^{1}}{{\underline{\underline{\gamma }}}^{0}}</math>
Zeile 351: Zeile 342:
: |(1.64)|RawN=.}}
: |(1.64)|RawN=.}}


{{NumBlk|:|Außerdem <font color="#FFFF00">'''''(AUFGABE)
{{NumBlk|:|Außerdem <font color="#3399FF">'''''(AUFGABE)
</font>'''''''''''(Vierstrom transformiert sich wie kontravarianter Vektor)<math>j{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{j}^{\nu }}</math>
</font>'''''''''''(Vierstrom transformiert sich wie kontravarianter Vektor)<math>j{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{j}^{\nu }}</math>


Zeile 358: Zeile 349:
<math>\partial {{'}_{\mu }}j{{'}^{\mu }}=\underbrace{{{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}{{L}^{\mu }}_{\alpha }}_{{{\delta }^{\nu }}_{\alpha }}{{j}^{\alpha }}={{\partial }_{\nu }}{{j}^{\nu }}=0</math>
<math>\partial {{'}_{\mu }}j{{'}^{\mu }}=\underbrace{{{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}{{L}^{\mu }}_{\alpha }}_{{{\delta }^{\nu }}_{\alpha }}{{j}^{\alpha }}={{\partial }_{\nu }}{{j}^{\nu }}=0</math>


Lorentz-Invarianz von
&#8594;
Lorentz-Invarianz von


<math>{{\partial }_{\mu }}{{j}^{\mu }}</math>
<math>{{\partial }_{\mu }}{{j}^{\mu }}</math>

Version vom 6. September 2010, 12:26 Uhr


Wir starten von

     (1.45)


  1. Kontinuitätsgleichung mit (1.45) und (1.45)+
mit der Wahrscheinlichkeitsdichte ρ und der Wahrscheinlichkeitsstromdichte jk.

     (1.46)


(Kontinuitätsgleichung)

     (1.47)


Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors zusammen.
  1. Lorentz-Invarianz

Umdefinieren der Matrizen als

     (1.48)


     (1.49)


(z.B. )


Relativistische Notation

kontravarianter VierervektorVierervektor mit Index oben

     (1.50)


kovarianter Vierervektor mit Index unten (kow steht below)

     (1.51)


  • Das relativistische Skalarprodukt

     (1.52)


bleibt invariant unter Lorentz-Transformation.

  • Metrischer Tensor
  • in der SRT der selbe überall
  • Hoch und Runterziehen
  • Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung)

allgemein


     (1.53)


hier mit .

  • Invarianz von unter Lorentz-Transformationen:


     (1.54)


Für Vierervektoren, die sich wie der Koordinatenvektor bei Lorentz-Transformation transformieren(1.53), ist Lorentz-invariant.

GradientVierergradient (etc)

     (1.55)


Die Dirac-Gleichung folgt aus

Dirac-Gleichung

     (1.56)


  • Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen

Es muss also gelten

     (1.57)


(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)


Lorentz-Transformation

Koordinaten

Ableitung

Wellenfunktion (4er Spinor)

Ruhemasse ist dieselbe

Selbe Ableitung der Dirac-Gleichung


Also muss gelten


Multiplikation von S-1 von links

Vergleich mit (1.57)

     (1.58)


Wenn (1.58) erfüllt ist, folgt relativistische Invarianz.

  • Konstriktion der Matrix S: Für kleine
     (1.59)


Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…)


     (1.60)


Berechnung (AUFGABE) ergibt


     (1.61)


  • Kontinuitätsgleichung, Viererstromdichte (1.37)
(ViererstromdichteViererstromdichte)

     (1.62)


(KontinuitätsgleichungKontinuitätsgleichung)

     (1.63)


Lorentz-Invarianz von :  zeige wobei

     (1.64)


(1.65)      {{{3}}}


→ Lorentz-Invarianz von