Lösungen der Dirac-Gleichung (freies Teilchen): Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:
: <math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0\Leftrightarrow \left[ \mathfrak{i} \left( {{\gamma }^{0}}{{\partial }_{t}}+{{\gamma }^{1}}{{\partial }_{{{x}^{1}}}}+{{\gamma }^{2}}{{\partial }_{{{x}^{2}}}}+{{\gamma }^{3}}{{\partial }_{{{x}^{3}}}} \right)-m \right]\Psi =0</math>
: <math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0\Leftrightarrow \left[ \mathfrak{i} \left( {{\gamma }^{0}}{{\partial }_{t}}+{{\gamma }^{1}}{{\partial }_{{{x}^{1}}}}+{{\gamma }^{2}}{{\partial }_{{{x}^{2}}}}+{{\gamma }^{3}}{{\partial }_{{{x}^{3}}}} \right)-m \right]\Psi =0</math>


a) {{FB|Separationsansatz}} <math>\Psi \left( \underline{x},t \right)={{e}^{-\mathfrak{i} Et}}\phi \left( {\underline{x}} \right)</math>
=={{FB|Separationsansatz}} ==
<math>\Psi \left( \underline{x},t \right)={{e}^{-\mathfrak{i} Et}}\phi \left( {\underline{x}} \right)</math>
{{NumBlk|:|
{{NumBlk|:|


Zeile 53: Zeile 54:




== Diskussion ==
=== Diskussion ===


* <math>{{\Psi }_{+}}={{e}^{-\mathfrak{i} Et}}\left( \begin{align}
* <math>{{\Psi }_{+}}={{e}^{-\mathfrak{i} Et}}\left( \begin{align}
Zeile 120: Zeile 121:
&rarr; konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): <math>\Psi </math> als Feld, das quantisiert wird.
&rarr; konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): <math>\Psi </math> als Feld, das quantisiert wird.


b) Laufenden ebene Wellen („laufende, nicht ruhende Teilchen“)
==Laufenden ebene Wellen==
'''(„laufende, nicht ruhende Teilchen“)'''
 
Ansatz<math>{{\Psi }_{\pm }}={{e}^{\mp \left( Et-\underline{k}.\underline{x} \right)}}{{\phi }_{\pm }}\left( E,\underline{k} \right),\quad E=+\sqrt{{{k}^{2}}+{{m}^{2}}}>0</math> mit <math>{{k}_{\mu }}{{x}^{\mu }}:=Et-\underline{k}.\underline{x}\Rightarrow {{k}_{\mu }}=\left( E,-{{k}_{x}},-{{k}_{y}},-{{k}_{z}} \right)</math>
Ansatz<math>{{\Psi }_{\pm }}={{e}^{\mp \left( Et-\underline{k}.\underline{x} \right)}}{{\phi }_{\pm }}\left( E,\underline{k} \right),\quad E=+\sqrt{{{k}^{2}}+{{m}^{2}}}>0</math> mit <math>{{k}_{\mu }}{{x}^{\mu }}:=Et-\underline{k}.\underline{x}\Rightarrow {{k}_{\mu }}=\left( E,-{{k}_{x}},-{{k}_{y}},-{{k}_{z}} \right)</math>



Version vom 6. September 2010, 12:31 Uhr


Wir starten von

Separationsansatz

     (1.66)


Ansatz (Eigenwertgleichung)

(hat 2 Eigenwerte)

     (1.67)


Diskussion

  • , zwei linear unabhängige Lösungen beschreibt ruhendes Teilchen der Masse m, Ruheenergie
  • Zwei Komponenten u1, u2 beschreiben Spin - ½, z.B.

     (1.68)
→ Dirac-Gleichung beschreibt Spin- ½ Teilchen.
zwei linear unabhängige Lösungen      (1.69)
hat aber negative Energie! Interpretationsproblem wie Klein-Gordon-Gleichung. Zufriedenstellend gelöst erst in der Quantenfeldtheorie (Teilchenerzeugung und Vernichtung).


„Anschauliche Interpretation“

  • Annahme vieler gleichartiger Spin- ½ -Teilchen der Masse m
  • Annahme: Es gibt einen Vielteilchen-Grundzustand („Vakuumzustand“), in dem alle Einzelteilchenzustände besetzt sind.
  • Ein einziges Elektron ist dann z.B. das Vakuum +1 Teilchen in einem Zustand .
  • Teilchen-Loch“ Anregung: Anregung von nach lässt „Loch“ im „Fermi-See“ zurück: dies hat positive Ladung (fehlende negative Ladung)
  • nützliches Konzept für die Halbleiterphysik

Vorteile der Löcher-Theorie:

  • Vorrausage des Positron (Antiteilchen zum Elektron, gleiche Masse, entgegengesetzte Ladung)
  • Paarvernichtung / Erzeugung

Nachteile der Löcher-Theorie:

  • Unendlicher See nicht beobachteter Elektronen
  • Beruht auf „Paul-Prinzip“ und funktionier bei der Klein-Gordon-Gleichung, die Bosonen mit Spin 0 beschreibt nicht.

→ konsistente Lösung dieses Problems in der zweiten Quantisierung (letzer Teil VL): als Feld, das quantisiert wird.

Laufenden ebene Wellen

(„laufende, nicht ruhende Teilchen“)

Ansatz mit

     (1.70)


(1.70) sind Gleichundgen für Spinoren (4-Komponentige Vektoren).

Lösung wie Matrixgleichung möglich, einfacher Trick:


   (1.71)

Insgesamt existieren also 4 linear unabhängige Lösungen mit der Basis

     (1.72)


AUFGABE: Bestimme Normierungsfaktor N so, dass Zeige aber Hierbei gilt