Zustände mit Bahn- und Spinvariablen: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 178: Zeile 178:
<math>\left( {{H}_{0}}\times 1 \right)\left| nlm{{m}_{s}} \right\rangle ={{E}_{nl}}\left| nlm{{m}_{s}} \right\rangle </math>
<math>\left( {{H}_{0}}\times 1 \right)\left| nlm{{m}_{s}} \right\rangle ={{E}_{nl}}\left| nlm{{m}_{s}} \right\rangle </math>


Insgesamt <math>2\left( 2l+1 \right)</math>
Insgesamt <math>2\left( 2l+1 \right)</math> fach entartet. Beim H- Atom: zusätzliche l- Entartung
fach entartet. Beim H- Atom: zusätzliche l- Entartung
<math>B\ne 0</math>
<math>B\ne 0</math>


Zeile 190: Zeile 189:


Das bedeutet:
Das bedeutet:
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter Anomaler Zeemann- Effekt !)
teilweise Aufhebung der <math>2(2l+1)</math>- fachen Entartung (sogenannter {{FB|Anomaler Zeemann-Effekt}} !)


: <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>
{{Gln| <math>E={{E}_{nl}}-{{\mu }_{B}}B\left( m+2{{m}_{s}} \right)</math>}}


Dies gilt für PARAMAGNETISCHE Atome mit magnetischem Moment
Dies gilt für '''paramagnetische''' Atome mit magnetischem Moment <math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>.
<math>{{\mu }_{3}}={{\mu }_{B}}\left( m+2{{m}_{s}} \right)</math>


Dabei entspricht
Dabei entspricht <math>2</math> vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben).
<math>2</math>
vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben).
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von <math>{{\mu }_{B}}</math>
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ):
angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ):

Version vom 10. September 2010, 17:37 Uhr




Sei nun ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:

Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als direktes Produkt der beiden Hilberträume zeigt.

Allgemein gilt für separable oder Produktzustände

(äquivalente Sprechweise):

Ein beliebiger Zustand kann nach Spin- Basis Zuständen

zerlegt werden:

mit

In der Ortsraum- Basis mit dem Bahn- Zustand

In der Matrix- Darstellung des Spinraumes ergibt dies:

Mit

entsprechend 2 Spinkomponenten, also entsprechend

Die Vollständigkeit der Zustände

folgt aus:

Weiter:

Also die Komponenten von am Ort , einmal die Komponente mit Spin und einmal die Komponente mit Spin . Dabei gilt:

entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei mit Spin bzw. Spin zu finden.

Schrödingergleichung im Spin- Bahn- Raum

Hamilton- Operator für Bahn: Elektron mit Ladung e{{H}_{B}}</math>

Hamilton- Operator für Spin:

wirkt dabei nur im Hilbertraum

Ohne Berücksichtigung von

Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in

Es gilt (äquivalente Darstellung):

Dabei = Einsoperator im Spinraum -> Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum:

MIT Berücksichtigung von

In Matrix- Darstellung:

Pauli Gleichung

Anwendung: - einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld

Dabei wird durch der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.

Wie man sieht bekommt man durch den Korrekturterm eine Korrektur an die Energie. Für B=0 -> Eigenzustände mit Spin

Insgesamt fach entartet. Beim H- Atom: zusätzliche l- Entartung

Das bedeutet: teilweise Aufhebung der - fachen Entartung (sogenannter Anomaler Zeemann-Effekt !)



Dies gilt für paramagnetische Atome mit magnetischem Moment .

Dabei entspricht vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben). Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ): Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben! Da die Aufhebung der Spin- Entartung die Energiezustände wieder so "weiterrückt", dass vorher getrennte wieder zusammenfallen!

Tabelle: Landé- Faktoren
Teilchen s g Q
Elektron 1/2 2 -e
Proton 1/2 5,59 e
Neutron 1/2 -3,83 0
Neutrino 1/2 0 0
Photon 1 0 0