Kernkräfte

Aus PhysikWiki
Zur Navigation springen Zur Suche springen

Die Abfrage enthält eine leere Bedingung.



Wegen Kräfte immer nur zwischen zwei Nukleonen. Einfachste Modellsysteme: a) das Deuteron und b) n-p Streuung


a) Deuteron als einfachstes gebundenes Nukleonensystem mit folgenden Eigenschaften

1) Bindungsenergie
2) Kernspin , magn. Kerndipolmoment (-Zustand) el. Quadrupolmoment mb, d.h. sehr klein
3) es existiert kein angeregter Zustand, außerdem gibt es kein Diproton oder Dineutron.


Reduktion des Zweikörperproblems durch Relativkoordinate und red. Masse

Schrödingergleichung


Problem bekannt, V unbekannt. Annahme: Zentralpotential. Separationsansatz von Radial- und Winkelteil


Radialteil mit Zentrifugalpotential


Zentrifugalpotential abstoßend --> Grundzustand 1 = 0 (wird durch I = 1 und unterstützt).


Erste (grobe) Annahme von V(r): Kastenpotential ( )


Trennung der Radialgleichung in Innen (1)- und Außen (I1)-Bereich

! r ~ r o dr2 112 (E - Vo)ou = 0 112 Lösung u = AosinKr + CocosKr RB: u = 0 für r ~ 0 = AosinKr wegen u/r endlich C = 0 d 2u [4,3 0 10-15m]-1 !I r ~ r o + 2~ Eou = 0 dr2 112 Lösung u = B' oe-kr + Dekr RB: u ~ 0 für r~oo = Be-k(r-ro) nv D = 0 u, V du Stetiger Ailschluß von u und dr bei r = r o : AosinKro = B KoAocosKro = Bo(-k)


E KoctgKro = -k

Damit werden die beiden Parameter (Va' r o ) des Kastenpotentials miteinander verknüpft, z.B. mögliche Wertepaare r o = 1,4 0 10-15 m, 2010-15 m Va = 50 MeV, 30 MeV


Oa f u"" r ~I = l-?, + l-?, nur I = 1 existiert, sind die Kernkräfte soinabhängig, wobei nur das Triplettpotential bindend ist. Erklärt auch die Nichtexistenz von p2 und n2 durch das Pauli-Prinzip. Ailsatz V =V1( r) + v 2 (r)0(s--l+o-s-+2 ) (-5-+1 --+ 1 3 05 2 ) :::} 7[S(S+1) 4 Triplett VT = VI (r) + 4 0 V2 (r) S = 1 1 Singulett Vs = VI (r) - 4 3 0 V2 (r) S = 0 Grobe Abschätzung für Singulett-Potential: Falls Vs gerade nicht mehr bindendr,vsinKro ~ 1 senkrecht auf Potentialwand, so daß man keine abnehmende Exponentialfunktion im Außenraum anfügen kann. Kro ~ ; bedeutet in Zahlenwerten Ivolor~ ~ 100 Va [MeV], r o [10-15 m]

Die Existenz des (sehr kleinen) Quadrupolmoments bedeutet einen sehr kleinen Beitrag einer nichtzentralen Kraft, die eine 3D1- zumischung ermöglicht.


b) n-p Streuung

Wirkungsquerschnitt a[m2 ]

aals "Trefferfläche" , z.B. a(geom.) = 1I"R2 R3 10-29_10-28m2 (l0-28m2 = 1b). Festkörpertarget N R3 1022 Kerne/cm~ö~1028m-3, Targetlänge z.B. 1 = 10-2m"'aNl R3 10-3_10- 2 , d.h. "dünnes" Target mit I = I o (l-aNl) . Kinematik: m "" m", "Billardproblem" p

2 ~ 1 Körperproblem: Stoß zweier Teilchen gleicher Masse im CMSystem ist äquivalent dem Stoß eines Teilchens mit reduzierter Masse ~ = m/2 und E = ELAB/2 an einem festen Streuzentrum bei ~ ~ ~ r:;;:: r - r ~ o.

Quantenmechanische Formulierung des Streuproblems

differentieller Wirkungsquerschnitt da/dn in Raumwinkel dn: da Fluß der gestreuten Teilchen in Raumwinkel dn (Detektor) dn Fluß der einlaufenden Teilchen pro Einheitsfläche Fluß der einfallenden Teilchen: leikz l 2 • v '- .. J 1 Teilchen pro Raumeinheit e ikr 2 2 Fluß der gestreuten Teilchen in dn: I--r - • f(0) I • r • v ~ adna = If (0) I 2 Quadrat der Streuamplitude f(0) Speziell für isotrope Streuung (f(0) = const.) ist dann der (Gesamt)-Wirkungsquerschnitt a = 411" • If1 2 .

Berechnung des Wirkungsquerschnitts: Zunächst Entwicklung der einlaufenden ebenen Welle nach Kugelwellen. e ikz = eikrcos0 = 1:: i 1 (21+1) jl(kr)"P1(cos0) 1 jl(kr) sphärische Besselfunktionen Sinn: Bei niedrigen Energien (En $ 10 MeV) kann wegen der kurzen Reichweite der Kernkräfte nur der 1 = O-Anteil (S-Wellenl gestreut werden. Teilchen mit 1 t 0 kommen bei diesen Energien nicht nahe genug heran. Quantitativ:

Wegen k = 0,15".J~ELAB[MeV]i"10l5 m- l und r o -~ 10-15 m ist für E LAB $ MeV die Bedingung kro $ 1 erfüllt. 1 2 Der S-Wellenanteil der einlaufenden ebenen Welle lautet mit jo(kr): sin kr _ eikr_e-lkr (S-Wellenanteil) = kr/ 2ikr""'" auslaufende einlaufende Kugelwelle Nach dem "Durchlaufen" des Zentralpotentials V = Ver) bleiben der S-Wellencharakter, der Wellenvektor k und die Teilchenzahl erhalten. Deshalb kann es nur eine Phasenänderung in der auslaufenden Kugelwelle geben. S-Wellenanteil nach Durchlaufen des Streupotentials: e i (kr+20 0 l_e ikr _ iO sin(kr+ool 2ikr = e 0 " kr Die Differenz des S-Wellenanteils vor und. nach der Streuung charakterisiert di~ qestreuten Teilchen, also die gestreute auslaufende el.kl." Kugelwelle --r-- " f(0): eiCkr+ 200 l _eikr sinoo - 2ikr " k Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von Berechnung der Streuphase mit einem Kastenpotential (Va' r o ) über die Schrödingergleichung analog zum Deuteronproblem, jedoch E > O. Innenbereich I Außenbereich 11 2 [-~2 - d2 + V ] U = E " u [_h ~ + 0] U = E • u 2p. dr2 0 2p. dr2 u = Al • sinKr u = A2 " sin(kr+oo ) K = ,; 2fL(E-VQ)' (siehe eiOo"sin(~~+Og) und W ~ u ofi2 r k =j~i 112 Stetige Anpassung für u und du/dr bei r = r o ergibt Al sin Kro = A2 " sin (kro+o o ) = A2k(ro-a) K • Al cos Kro = k • A2 " cos (kro+oo ) = A2k k " K . Im niederenergetischen Bereich mit k " K kann man die Sinusfunktion im Außenbereich durch eine Gerade ersetzen u ~ A2 (kr+o o ) = A2k(r-a) mit 00 = -ka. Die sogenannte Streulänge a ist der Schnittpunkt dieser Geraden mit der r-Achse. Je nachdem (Va' r o ) für E ~ 0 bindend oder nichtbindend ist, ist a positiv oder negativ. Sehr große Werte für die Streulänge erhält man, wenn das Potential gerade noch (VT) oder gerade nicht mehr bindend (Vs ) ist. - 29 eiCkr+ 200 l _eikr sinoo - 2ikr " k Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von der

Wirkungsquerschnitt a = 4~lf(0)12 = 4~.sln Q = 4~a2 unabhängig von E für den Bereich k ({ K mi~2" = -ka und a = 1 0 r o - K tgKro ' In der Streu1änge a sind wieder die beiden Parameter des Kastenpotentials (Vo ' r o) miteinander verknüpft. Experimentell:

Grobe Abschätzung aus Deuteronproblem ergibt für das Triplettpotential a T = 5,7.10-1Sm und damit aT ~ 4,5.10-28m2 . Damit erhält man aus a ~ 20.10-28m2 für a s ~ 68.l0-28m2 und lasl = 23.l0- 28m2 . Das negative Vorzeichen a s < 0 folgt aus Messungen der kohärenten Streuung am Para-Wasserstoff-Molekül. Während der Bereich bis ca. 104 eV vom Si~ulett-Potential beherrscht wird, tritt für den Bereich 104 - 107 eV immer mehr das Triplett-Potential in den Vordergrund. Ab 107 eV müssen verstärkt höhere B'ahndrehimpulsanteile berücksichtigt werden. Bei einer feldtheoretischen Behandlung in Analogie zur Quantenelektrodynamik versucht man die Kernkräfte durch Mesonen-Austauschprozesse zu beschreiben. Dabei wird der "langreichweitige" Teil durch Ein-Pion-Austauschprozesse (Yukawa-Ansatz 1935) und der Bereich mittlerer Reichweite durch Zwei-Pion-Austauschprozesse beschrieben. Der "kurzreichweitige" Teil mit einem stark abstoßenden Anteil (hard core) muß durch den Austausch mehrerer Mesonen behandelt werden. Dabei spielen nicht nur die ~-Mesonen, sondern schwere Mesonen (z.B. das w-Meson mit mc 2 = 783 MeV) wegen ihrer kleinen Compton-Wellenlänge eine besondere Rolle. Da Nukleonen und Mesonen ihrerseits aus Quarks zusammengesetzt sind, die von Gluonen zusammengehalten werden, muß eine genauere Feldtheorie der Kernkräfte auf diesen Teilchen aufbauen.