Kernkräfte

Aus PhysikWiki
Zur Navigation springen Zur Suche springen

Die Abfrage enthält eine leere Bedingung.



Wegen Kräfte immer nur zwischen zwei Nukleonen. Einfachste Modellsysteme: a) das Deuteron und b) n-p Streuung


a) Deuteron als einfachstes gebundenes Nukleonensystem mit folgenden Eigenschaften

1) Bindungsenergie
2) Kernspin , magn. Kerndipolmoment (-Zustand) el. Quadrupolmoment mb, d.h. sehr klein
3) es existiert kein angeregter Zustand, außerdem gibt es kein Diproton oder Dineutron.


Reduktion des Zweikörperproblems durch Relativkoordinate und red. Masse

Schrödingergleichung


Problem bekannt, V unbekannt. Annahme: Zentralpotential. Separationsansatz von Radial- und Winkelteil


Radialteil mit Zentrifugalpotential


Zentrifugalpotential abstoßend --> Grundzustand 1 = 0 (wird durch I = 1 und unterstützt).


Erste (grobe) Annahme von V(r): Kastenpotential ( )


Trennung der Radialgleichung in Innen (I)- und Außen (II)-Bereich

I ,

Lösung RB: für wegen u/r endlich C = 0


I ,

Lösung RB: u = A \sin Kr</math> RB: für D=0


Stetiger Anlschluß von u und \frac{du}{dr} bei  :

Damit werden die beiden Parameter ( ) des Kastenpotentials miteinander verknüpft, z.B. mögliche Wertepaare

Da für nur I = 1 existiert, sind die Kernkräfte spinabhängig, wobei nur das Triplettpotential bindend ist. Erklärt auch die Nichtexistenz von und durch das Pauli-Prinzip.


Ailsatz V =V1( r) + v 2 (r)0(s--l+o-s-+2 ) (-5-+1 --+ 1 3 05 2 ) :::} 7[S(S+1) 4 Triplett VT = VI (r) + 4 0 V2 (r) S = 1 1 Singulett Vs = VI (r) - 4 3 0 V2 (r) S = 0


Grobe Abschätzung für Singulett-Potential: Falls V_s gerade nicht mehr bindender, senkrecht auf Potentialwand, so daß man keine abnehmende Exponentialfunktion im Außenraum anfügen kann.

bedeutet in Zahlenwerten


Die Existenz des (sehr kleinen) Quadrupolmoments bedeutet einen sehr kleinen Beitrag einer nichtzentralen Kraft, die eine -Zumischung ermöglicht.


b) n-p Streuung

Wirkungsquerschnitt

als "Trefferfläche" , z.B. . Festkörpertarget Kerne/cm³, , Targetlänge z.B. , d.h. "dünnes" Target mit .


Kinematik: , "Billardproblem"

Körperproblem: Stoß zweier Teilchen gleicher Masse im CM-System ist äquivalent dem Stoß eines Teilchens mit reduzierter Masse und an einem festen Streuzentrum bei .

Quantenmechanische Formulierung des Streuproblems


differentieller Wirkungsquerschnitt da/dn in Raumwinkel dn: da Fluß der gestreuten Teilchen in Raumwinkel dn (Detektor) dn Fluß der einlaufenden Teilchen pro Einheitsfläche Fluß der einfallenden Teilchen: leikz l 2 • v '- .. J 1 Teilchen pro Raumeinheit e ikr 2 2 Fluß der gestreuten Teilchen in dn: I--r - • f(0) I • r • v ~ adna = If (0) I 2 Quadrat der Streuamplitude f(0) Speziell für isotrope Streuung (f(0) = const.) ist dann der (Gesamt)-Wirkungsquerschnitt a = 411" • If1 2 .

Berechnung des Wirkungsquerschnitts: Zunächst Entwicklung der einlaufenden ebenen Welle nach Kugelwellen. e ikz = eikrcos0 = 1:: i 1 (21+1) jl(kr)"P1(cos0) 1 jl(kr) sphärische Besselfunktionen Sinn: Bei niedrigen Energien (En $ 10 MeV) kann wegen der kurzen Reichweite der Kernkräfte nur der 1 = O-Anteil (S-Wellenl gestreut werden. Teilchen mit 1 t 0 kommen bei diesen Energien nicht nahe genug heran. Quantitativ:

Wegen k = 0,15".J~ELAB[MeV]i"10l5 m- l und r o -~ 10-15 m ist für E LAB $ MeV die Bedingung kro $ 1 erfüllt. 1 2 Der S-Wellenanteil der einlaufenden ebenen Welle lautet mit jo(kr): sin kr _ eikr_e-lkr (S-Wellenanteil) = kr/ 2ikr""'" auslaufende einlaufende Kugelwelle Nach dem "Durchlaufen" des Zentralpotentials V = Ver) bleiben der S-Wellencharakter, der Wellenvektor k und die Teilchenzahl erhalten. Deshalb kann es nur eine Phasenänderung in der auslaufenden Kugelwelle geben. S-Wellenanteil nach Durchlaufen des Streupotentials: e i (kr+20 0 l_e ikr _ iO sin(kr+ool 2ikr = e 0 " kr Die Differenz des S-Wellenanteils vor und. nach der Streuung charakterisiert di~ qestreuten Teilchen, also die gestreute auslaufende el.kl." Kugelwelle --r-- " f(0): eiCkr+ 200 l _eikr sinoo - 2ikr " k Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von Berechnung der Streuphase mit einem Kastenpotential (Va' r o ) über die Schrödingergleichung analog zum Deuteronproblem, jedoch E > O. Innenbereich I Außenbereich 11 2 [-~2 - d2 + V ] U = E " u [_h ~ + 0] U = E • u 2p. dr2 0 2p. dr2 u = Al • sinKr u = A2 " sin(kr+oo ) K = ,; 2fL(E-VQ)' (siehe eiOo"sin(~~+Og) und W ~ u ofi2 r k =j~i 112 Stetige Anpassung für u und du/dr bei r = r o ergibt Al sin Kro = A2 " sin (kro+o o ) = A2k(ro-a) K • Al cos Kro = k • A2 " cos (kro+oo ) = A2k k " K . Im niederenergetischen Bereich mit k " K kann man die Sinusfunktion im Außenbereich durch eine Gerade ersetzen u ~ A2 (kr+o o ) = A2k(r-a) mit 00 = -ka. Die sogenannte Streulänge a ist der Schnittpunkt dieser Geraden mit der r-Achse. Je nachdem (Va' r o ) für E ~ 0 bindend oder nichtbindend ist, ist a positiv oder negativ. Sehr große Werte für die Streulänge erhält man, wenn das Potential gerade noch (VT) oder gerade nicht mehr bindend (Vs ) ist. - 29 eiCkr+ 200 l _eikr sinoo - 2ikr " k Damit gilt für den diff. Wirkungsquerschnitt in Abhängigkeit von der

Wirkungsquerschnitt a = 4~lf(0)12 = 4~.sln Q = 4~a2 unabhängig von E für den Bereich k ({ K mi~2" = -ka und a = 1 0 r o - K tgKro ' In der Streu1änge a sind wieder die beiden Parameter des Kastenpotentials (Vo ' r o) miteinander verknüpft. Experimentell:

Grobe Abschätzung aus Deuteronproblem ergibt für das Triplettpotential a T = 5,7.10-1Sm und damit aT ~ 4,5.10-28m2 . Damit erhält man aus a ~ 20.10-28m2 für a s ~ 68.l0-28m2 und lasl = 23.l0- 28m2 . Das negative Vorzeichen a s < 0 folgt aus Messungen der kohärenten Streuung am Para-Wasserstoff-Molekül. Während der Bereich bis ca. 104 eV vom Si~ulett-Potential beherrscht wird, tritt für den Bereich 104 - 107 eV immer mehr das Triplett-Potential in den Vordergrund. Ab 107 eV müssen verstärkt höhere B'ahndrehimpulsanteile berücksichtigt werden. Bei einer feldtheoretischen Behandlung in Analogie zur Quantenelektrodynamik versucht man die Kernkräfte durch Mesonen-Austauschprozesse zu beschreiben. Dabei wird der "langreichweitige" Teil durch Ein-Pion-Austauschprozesse (Yukawa-Ansatz 1935) und der Bereich mittlerer Reichweite durch Zwei-Pion-Austauschprozesse beschrieben. Der "kurzreichweitige" Teil mit einem stark abstoßenden Anteil (hard core) muß durch den Austausch mehrerer Mesonen behandelt werden. Dabei spielen nicht nur die ~-Mesonen, sondern schwere Mesonen (z.B. das w-Meson mit mc 2 = 783 MeV) wegen ihrer kleinen Compton-Wellenlänge eine besondere Rolle. Da Nukleonen und Mesonen ihrerseits aus Quarks zusammengesetzt sind, die von Gluonen zusammengehalten werden, muß eine genauere Feldtheorie der Kernkräfte auf diesen Teilchen aufbauen.