Kernradien: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 19: Zeile 19:
Für relat. Teilchen (<math>E \gg m_0c^2</math>, exakt für Teilchen mit Ruhemasse <math>m_0= 0</math>, d.h. Photonen, Neutrinos (?), Gravitonen (?), ... ) gilt wegen <math>E = pc</math> für die de Broglie-Wellenlänge <math>\lambda\!\!\!{}^{-}</math>:
Für relat. Teilchen (<math>E \gg m_0c^2</math>, exakt für Teilchen mit Ruhemasse <math>m_0= 0</math>, d.h. Photonen, Neutrinos (?), Gravitonen (?), ... ) gilt wegen <math>E = pc</math> für die de Broglie-Wellenlänge <math>\lambda\!\!\!{}^{-}</math>:


:<math>\lambda\!\!\!{}^{-}=\frac{\hbar}{p}=\frac{hc}{E}\approx \frac{3\times 10^{8-34} m}{1.6\times 10^{-19+6} E[MeV]}\approx 200 \frac{10^{-15}}{E[MeV]}</math>
:<math>\lambda\!\!\!{}^{-}=\frac{\hbar}{p}=\frac{\hbar c}{E}\approx \frac{3\times 10^{8-34} m}{1.6\times 10^{-19+6} E[MeV]}\approx 200 \frac{10^{-15}}{E[MeV]}</math>


d.h. für <math>E > 200 MeV</math> ist <math>\lambda\!\!\!{}^{-}< 10^{-15} m</math>.
d.h. für <math>E > 200 MeV</math> ist <math>\lambda\!\!\!{}^{-}< 10^{-15} m</math>.

Version vom 15. August 2011, 19:25 Uhr

Die Abfrage enthält eine leere Bedingung.


Kernradienbestimmung durch Streuexperimente mit hochbeschleunigten Elektronen (Hofstadter-Experimente)


Hofstadter-Experimente

Beugungsmaxima und -minima

Erstes Minimum bei

Bedingung:

Für Kern , als 'Licht' sind hochbeschleunigte Elektronen gut geeignet (keine Starke WW).

Verknüpfung von Energie E, Impuls p und Wellenlänge durch relativistische Energiegleichung:

Einstein Energiegleichung


Für relat. Teilchen (, exakt für Teilchen mit Ruhemasse , d.h. Photonen, Neutrinos (?), Gravitonen (?), ... ) gilt wegen für die de Broglie-Wellenlänge :

d.h. für ist .

Hofstädter-Experimente am Linearbeschleuniger in Stanford 1957 [1]



Ergebnis der Messungen für viele Elemente:


Genauer: kein scharfer Rand


Für alle Kerne etwa gleiche Ladungsdichte im Inneren und gleiche Randbreite von ca. m.


Quantitativ beschreibbar durch die Wood-Saxon-Formel:


Randbreite (90% 10% Abfall) 'Radius' m


Andere Meßmethoden zur Kernradienbestimmung: Isotopieverschiebung (Volumeneffekt) im optischen Bereich


besonders für S-Elektronen wegen deren endlicher Aufenthaltswahrscheinlichkeit am Kernort. Noch wesentlich stärkerer Effekt bei myonischen Atomen wegen der ca. 200x kleineren Bahnradien.

Literatur

  1. (Zusammenfassend: Rev. Mod. Phys. 1Q, 142-584 (1958) http://rmp.aps.org/abstract/RMP/v30/i2/p412_1)

Weitere Informationen

(gehört nicht zum Skript)

Hofstäder-Experiment