Klein Gordon Gleichung: Unterschied zwischen den Versionen

Aus PhysikWiki
Zur Navigation springen Zur Suche springen
Änderung 3164 von Schubotz (Diskussion) rückgängig gemacht.
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 7: Zeile 7:
:was auf die {{FB|Schrödingergleichung|freies Teilchen}}
:was auf die {{FB|Schrödingergleichung|freies Teilchen}}
{{NumBlk|:|
{{NumBlk|:|
<math>\mathfrak{i} {{\partial }_{t}}\Psi =\hat{H}\Psi ,\quad \hat{H}=-\frac{\Delta }{2m}</math>
:<math>\mathfrak{i} {{\partial }_{t}}\Psi =\hat{H}\Psi ,\quad \hat{H}=-\frac{\Delta }{2m}</math>
: |(1.3)}}
: |(1.3)}}
:führt.
:führt.
Zeile 26: Zeile 26:
:mit
:mit
{{NumBlk|:|
{{NumBlk|:|
<math>\begin{align}
:<math>\begin{align}
& \underline{j}=\frac{1}{2\mathfrak{i} m}\left( {{\Psi }^{*}}\nabla \Psi -\Psi \nabla {{\Psi }^{*}} \right) \\
& \underline{j}=\frac{1}{2\mathfrak{i} m}\left( {{\Psi }^{*}}\nabla \Psi -\Psi \nabla {{\Psi }^{*}} \right) \\
& \rho \equiv \frac{1}{2m}\left( {{\Psi }^{*}}{{\partial }_{t}}\Psi -\Psi {{\partial }_{t}}{{\Psi }^{*}} \right) \\
& \rho \equiv \frac{1}{2m}\left( {{\Psi }^{*}}{{\partial }_{t}}\Psi -\Psi {{\partial }_{t}}{{\Psi }^{*}} \right) \\
Zeile 36: Zeile 36:
Allerdings gilt
Allerdings gilt
:<math>\begin{align}
:<math>\begin{align}
& \int{\rho \left( \underline{x},t \right){{d}^{d}}\underline{x}}={{\left( \frac{1}{2\pi } \right)}^{d}}\frac{1}{m}\int{\int{\int{{{\varphi }^{*}}\left( {\underline{k}} \right)\varphi \left( {{\underline{k}}'} \right){{e}^{i\left( \underline{k}-{\underline{k}}' \right)\underline{x}}}\omega \left( {{\underline{k}}'} \right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'} \\
& \int{\rho \left( \underline{x},t \right){{d}^{d}}\underline{x}}={{\left( \frac{1}{2\pi } \right)}^{d}}\frac{1}{m}\int{\int{\int{{{\varphi }^{*}}\left( {\underline{k}} \right)\varphi \left( {{\underline{k}}'} \right){{e}^{i\left( \underline{k}-{\underline{k}}' \right)\underline{x}}}\omega \left( {{\underline{k}}'} \right){{d}^{d}}x}{{d}^{d}}k}{{d}^{d}}{k}'} \\
& =\frac{1}{m}\int{\omega \left( {\underline{k}} \right){{\left| \varphi \left( {\underline{k}} \right) \right|}^{2}}{{d}^{d}}\underline{k}}>0
& =\frac{1}{m}\int{\omega \left( {\underline{k}} \right){{\left| \varphi \left( {\underline{k}} \right) \right|}^{2}}{{d}^{d}}\underline{k}}>0
\end{align}</math> für<math>\omega \left( {\underline{k}} \right)>0</math>.
\end{align}</math> für<math>\omega \left( {\underline{k}} \right)>0</math>.
Zeile 47: Zeile 45:
* Schreibweise
* Schreibweise
{{NumBlk|:|
{{NumBlk|:|
<math>\left( \square +\frac{{{m}^{2}}{{c}^{2}}}{{{\hbar }^{2}}} \right)\Psi =0</math>
:<math>\left( \square +\frac{{{m}^{2}}{{c}^{2}}}{{{\hbar }^{2}}} \right)\Psi =0</math>
: |(1.8)}}
: |(1.8)}}
mit <math>\frac{\hbar }{mc}</math>der {{FB|Compton-Wellenlänge}} als charakteristische Längenskala.
mit <math>\frac{\hbar }{mc}</math>der {{FB|Compton-Wellenlänge}} als charakteristische Längenskala.

Aktuelle Version vom 9. April 2012, 18:17 Uhr


Ein quantenmechanisches Wellenpaket hat die Form

     ((1.1))
wobei d die Raumdimension angibt.
Nach Schrödinger (nicht relativistisch)      ((1.2))
was auf die Schrödingergleichung
     ((1.3))
führt.

Relativistisch (SRT) gilt

     ((1.4))
wegen und .

Ab jetzt gilt .

Mit (1.4) erfüllt Ψ jetzt die Klein-Gordon-Gleichung:

Klein-Gordon-Gleichung
     ((1.5))


Es gilt die (AUFGABE)

Kontinuitätsgleichung      ((1.6))
mit
     ((1.7))


Dabei ist die Stromdichte () wie in der Schrödingergleichung; allerdings ist ρ im allgemeinen nicht positiv!

Allerdings gilt

für.

Diskurssion:

  • Klein-Gordon-Gleichung ist eine hyperbolische Differentialgeleichung wie die Wellengleichung.
  • Auch ein Wellenpaket mit erfüllt die Klein-Gordon-Gleichung jedoch stellt dies ein Interpretationsproblem dar, da es sich um Teilchen mit negativer Energie handeln müsste.
  • Klein-Gordon-Gleichung ist eine Differentialgleichung zweiter Ordnung von t und somit ist das dazugehörige Anfangswertproblem () nur lösbar bei zusätzlicher Angabe von.
  • Schreibweise
     ((1.8))

mit der Compton-Wellenlänge als charakteristische Längenskala. Hier ist der d’Alambert-Operator.


Literatur

LITERATUR: SKRIPT FREDENHAGEN QMII, HAMBURG

Schöll-Script

Siehe auch

Klein-Gordon-Gleichung